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Abstract We present a self-consistent analytic theory of the wind-driven sea—the weak-turbulent
theory. The base statement of the theory is that the four-wave resonant interactions play the leading role
in the energy balance of the wind-driven sea. We study the exact solution of the stationary wave kinetic
equation and the self-similar solutions of wave kinetic equation both in fetch- and duration-limited cases.
The theory makes possible to explain the nature of universal power-like energy spectra as well as the
power-like dependence of the total wave energy and peak frequency from the fetch and the duration.

1. Introduction
Geophysical phenomena are generally difficult for mathematical modeling due to their complexity. Surface
ocean waves, both freely propagating and excited by the wind, are a notable exception. A consistent ana-
lytic theory of this phenomenon is well developed. It explains the majority of observed experimental facts
through a few empiric characteristics. This lucky opportunity is based on the existence of two small physical
parameters. First is the air-to-water density ratio 𝜖 = 𝜌a∕𝜌w ≈ 1.2 · 10−3, and the second one is the average
wave steepness. One should distinguish between the local and the average steepness. Let 𝜂(r, t) to be the
sea surface elevation. The local steepness is defined as 𝜇loc = |∇𝜂|. In areas of white capping, this quan-
tity could be arbitrary large. Now let E = ⟨𝜂2⟩ be the variance of sea surface elevation while 𝜔p is circular
frequency of the spectral peak. The average steepness is defined as follows:

𝜇2 =
E𝜔4

p

g2 .

The characteristic value of steepness for wind-driven waves in the open seas is 0.05−0.07 ≪ 1 (e.g., Badulin
et al., 2007). If 𝜇 ≃ 0.1, the waves are sharp; if 𝜇 ≃ 0.13, the waves become unstable and ready to be destroyed
by ineluctable wave breaking. The other gentle slope waves, sea swells (𝜇 < 0.04), do not decay during a
hundred thousands periods and can, for example, cross the globe several times.

The localized wave-breaking events where local steepness 𝜇loc is extremely large cover only a relatively
small part of the ocean surface, and the ocean may be assumed “linear in mean.” This quasi-linearity holds
even in strong storms and hurricanes. It allows us to apply the regular expansion procedure in powers of
steepness to the basic equations and to construct a self-consistent solid analytic theory of wind-driven seas.
We will call it the weak-turbulent theory (WTT; Zakharov et al., 1992; Zakharov, 2010; Zakharov & Filonenko,
1966). Nowadays, this theory is supported by massive numeric simulations. WTT explains the bulk of the
experimental facts, accumulated in physical oceanography over decades. The main tool of WTT is the wave
kinetic equation (WKE) first derived by Hasselmann, (1962, 1963b, 1963a). It is important to stress the fact
that WKE is the limiting case of the quantum kinetic equation (QKE), widely used in theoretical physics
since Nordheim (1928).

It is clear now that WTT can be used for the description of very broad class of physical phenomena, including
waves in magnetohydrodynamics (Galtier et al., 2000), waves in nonlinear optics (Yousefi, 2017), gravita-
tional waves in the Universe (de Oliveira et al., 2013; Galtier & Nazarenko, 2017), plasma waves (Balk, 2000;
Yoon et al., 2016), capillary waves (Pushkarev & Zakharov, 1996; Yulin, 2017; Tran, 2017), and Kelvin waves
in super-fluid helium (Lvov & Nazarenko, 2010). Nowadays, WTT is the branch of theoretical physics.
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The current paper is predominantly, the review, to place WTT in the perspective. Sections 2, 3, 4 contain
basic results of WTT including the Kolmogorov-Zakharov (KZ) solutions that became a classic of today's
physics. Self-similar solutions for WKE are presented in section 5 as ones providing insight into features of
dynamics and explaining essential experimental findings on sea wave evolution. New unpublished results
are given in section 6.

2. Basic Equations
We study the potential flow of an ideal incompressible fluid defined in the domain −∞ < z < 𝜂(x, y). The
velocity field is potential: v = ∇Φ. The potential evaluated on the surface is Ψ = Φ|z = 𝜂 . The canonical
variables 𝜂 and Ψ satisfy the Hamiltonian equations (Zakharov & Filonenko, 1966)

𝜕𝜂

𝜕t
= 𝜕H

𝜕Ψ
; 𝜕Ψ

𝜕t
= −𝜕H

𝜕𝜂
(1)

where H is the total energy of the fluid. In the case 𝜇 ≪ 1, one can expand the Hamiltonian in powers of 𝜇
(e.g., Zakharov, 1999)

H = H0 + H1 + H2 + …; H0 ∼ 𝜇2, H1 ∼ 𝜇3, H2 ∼ 𝜇4. (2)

We assume thereafter that the water density 𝜌w = 1. In this case

H0 =
g
2 ∫ 𝜂2 dr + 1

2 ∫ ΨK̂Ψdr.

Here K̂ =
√
−Δ is a positive operator andΔ = 𝜕2∕𝜕x2 + 𝜕2∕𝜕y2 is the Laplacian. Keeping only the first three

terms in the equation (2) yields the numerically solvable equation (e.g., Korotkevich et al., 2008; Pushkarev
& Zakharov, 1996). We perform the nonsymmetrical Fourier transform

𝜂(r, t) = ∫ 𝜂(k) exp(ikr)dk Ψ(r, t) = ∫ Ψ(k) exp(ikr)dk.

The introduction of normal variables

𝜂k =
(
𝜔k

2g

)1∕2

(ak + a∗
−k); Ψk = i

(
g

2𝜔k

)1∕2

(ak − a∗
−k)

yields the Hamiltonian

H = ∫ 𝜔kaka∗
k dk + H3 + H4 … (3)

where H3, H4 contain cubic and quartic in ak, a∗
k terms correspondingly. If 𝜇 ≪ 1, these terms are small

with respect to the leading quadratic term in (3). Here 𝜔k =
√

g|k| is the deep water waves dispersion law.
The resulting dynamic equations are

𝜕ak

𝜕t
= i 𝛿H̃

𝛿a∗
k

H̃ = 1
4𝜋2 H. (4)

The main question is which weakly nonlinear process is the dominant one? The dominant processes on deep
water are the four-wave interactions (Phillips, 1960). In these interactions wave vectors obey the resonance
conditions:

𝜔0 + 𝜔1 = 𝜔3 + 𝜔4

k0 + k1 = k3 + k4.
(5)

Equation (5) defines the resonant manifold. Such resonant four-vector sets are called quadruplets.

The implementation of the proper canonical transformation ak → bk (e.g., Krasitskii, 1994; Zakharov, 1999)
makes possible the elimination of the third-order term H3 of the Hamiltonian expansion. After a canonical
transformation, we obtain

H = ∫ 𝜔kbkb∗
k dk + 1

2 ∫ Tkk1k2k3
b∗

kb∗
k1

bk2
bk3

𝛿(k + k1 − k2 − k3)dkdk1 dk2 dk3. (6)
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The coupling coefficient T is a homogeneous function of the order 3, satisfying the natural symmetry condi-
tions. An explicit formula for Tk1k2k3k4

can be found in Geogjaev and Zakharov (2017). The new canonical
variable bk obeys the equation

𝜕bk

𝜕t
= 𝛿H

𝛿b∗
k
. (7)

Let us stress the difference between equations (4) and (7). Equation (4) has only natural motion constants:
energy H and momentum M = ∫ Kaka∗

k dk. Equation (7) has an additional motion constant—the wave
action

N = ∫ bkb∗
k dk.

This integral is approximate since five-wave interactions violate it. Its presence, nevertheless, strongly affects
the dynamics and kinematics of the gravity surface waves.

The existence of the wave action integral explains fundamental effect observed in wind-driven seas: the
downshift of the spectral maximum to the area of large scales. Equation (7) is known as “the Zakharov
equation” (Zakharov, 1966, 1968; Zakharov & Filonenko, 1966). It is widely used both in analytic study and
in numeric experiments (e.g., Annenkov & Shrira, 1999, 2004; Saffman & Yuen, 1980).

3. Wave Kinetic Equation
The real sea wave ensemble consists of basic quasi-linear waves and “bounded” or “slave” harmonics. The
slave harmonics are as important as the basic ones, their nonlinear interaction makes an important contri-
bution to the “effective Hamiltonian” (6). One can say that the canonical transformation ak → bk “cleans”
the sea from the slave harmonics (see Zakharov, 2010). They can be described statistically by introducing
the “wavenumber spectrum” Nk

< bkb∗
k′ >= Nk𝛿(k − k′). (8)

The spectrum Nk obeys the equation

dNk

dt
=

𝜕Nk

𝜕t
+

𝜕𝜔k

𝜕k
∇xNk = Snl, (9)

Snl = Fk − ΓkNk, (10)

where (see Zakharov & Badulin, 2011, for details)

Fk = 𝜋g2 ∫ |T0123|2N1N2N3

× 𝛿(k + k1 − k2 − k3)𝛿(𝜔k + 𝜔1 − 𝜔2 − 𝜔3)dk1dk2dk3,

(11)

Γk = 𝜋g2 ∫ |T0123|2(N1N2 + N1N3 − N2N3)

× 𝛿(k + k1 − k2 − k3)𝛿(𝜔k + 𝜔1 − 𝜔2 − 𝜔3)dk1dk2dk3.

(12)

Here Fk > 0 is the “income term” and ΓkNk is the “outcome term.” In a stable situation, Γk > 0, and the
income term can balance the outcome term. ΓK can be treated as the coefficient of wave dissipation due to
nonlinear wave-wave interactions.

Equation (9) has many names. It is known as the “energy transfer equation” or the “radiation transfer
equation.” It is also called the “Hasselmann equation,” which is quite reasonable: it was Hasselmann (1962,
1963a, 1963b) who first derived this equation directly from the Euler equation for a free surface ideal fluid.

The equation (9) is often erroneously called the “Boltzmann equation.” Hereafter we will call it the WKE.
The motivation is the fact that theoretical physics widely uses kinetic equations for distribution functions of

ZAKHAROV ET AL. 3



Earth and Space Science 10.1029/2018EA000471

quasiparticles. Assuming the quasiparticles are bosons, Hamiltonian (6) generates the following quantum
kinetic equation (QKE) (Nordheim, 1928):

Snl = 𝜋g2∫k1 ,k2 ,k3

|Tkk1k2k3
|2𝛿(k + k1 − k2 − k3)𝛿(𝜔 + 𝜔1 − 𝜔2 − 𝜔3)[(

NkNk1
Nk2

+ NkNk1
Nk4

− NkNk2
Nk3

− Nk1
Nk2

Nk3

)
+

+ ℏ

𝜌wg
(

NkNk1
− Nk2

Nk3

)]
dk1 dk2 dk3.

(13)

Here ℏ ≃ 1 × 10−34Kg·m2∕s is the Plank constant. The quadratic terms in (13) can be neglected for ocean
waves with great accuracy, and the QKE turns into the WKE. In the opposite case, when N = ∫ Nk dk ≪

ℏ∕𝜌wg, one can neglect the cubic terms and reduce the QKE to the classical Boltzmann equation. That
approach can be performed for the surface of liquid helium.

The QKE is widely used in condensed matter physics; the Boltzmann kinetic equation is the main tool
in the gas kinetic theory. Their properties bear significant similarities due to standard conservation of
motion constants—energy, momentum, and number of particles. They also have fundamental thermody-
namic equilibrium solutions, localized in k space and nonequilibrium solutions that do not deviate too far
from the equilibrium ones (see Lifshitz & Pitaevskii, 1981). The WKE is an object of quite different nature.
Nevertheless, it is the backbone of the WTT that became a branch of theoretical physics.

4. KZ Solution of WKE
Let us consider the stationary homogeneous WKE

Snl = 0. (14)

It has thermodynamic equilibrium—the Rayleigh-Jeans solution

Nk = T
𝜔k + 𝜐

(15)

where T and 𝜐 are the temperature and chemical potential, respectively. After plugging (15) into (14),
one finds the divergence of the income and outcome terms. More accurate analysis shows that the
thermodynamic solution is just a formal one, which is completely useless for applications.

But the stationary WKE (14) has other, much more important KZ solutions, which are similar to the Kol-
mogorov spectra in the theory of turbulence. They are governed by the fluxes of the motion constants,
that is, energy, momentum, and wave action. The candidates for motion constants are the following:
wave action density

N = ∫ Nk dk,

wave energy density

E = ∫ 𝜔kNk dk,

and wave momentum density

M = ∫ kNk dk.

Are they really conserved? Conservation of the wave energy means that

∫ 𝜔kSnl dk = 0. (16)

The validity of this relation seems to be an obvious fact. To prove it, one just needs to change the order
of integration in (16). But, the devil is in the details—the permutation of integration orders in the WKE is
not permitted (see Pushkarev et al., 2003, for details). As the result, the integrals N, E, and M are not the
motion constants in a general situation. One can “save” the conservation of the wave action N, assuming that

ZAKHAROV ET AL. 4
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|Nk| < C∕k𝛼 , 𝛼 > 23∕6 in the initial moment of time. The wave energy and momentum “leak,” however,
to the area of small scales for any initial data.

Let us introduce polar coordinates:

kx = 𝜔2

g
cos 𝜃; k𝑦 =

𝜔2

g
sin 𝜃.

Energy, momentum and wave action are the following:

𝜀(𝜔, 𝜃) = 2𝜔4

g2 N(k); Mx(𝜔, 𝜃) =
2𝜔5 cos 𝜃

g8 N(k); N(𝜔, 𝜃) = 2𝜔3

g2 N(k).

Integration in angle leads to the “one-dimensional” spectra

𝜀(𝜔) = ∫
2𝜋

0
𝜀(𝜔, 𝜃)d𝜃; N(𝜔) = ∫

2𝜋

0
N(𝜔, 𝜃)d𝜃; Mx(𝜔) = ∫

2𝜋

0
Mx(𝜔, 𝜃)d𝜃. (17)

Conservation laws for the WKE may be rewritten in the differential form

𝜕N(𝜔)
𝜕t

= 𝜕Q(𝜔)
𝜕𝜔

; 𝜕𝜀(𝜔)
𝜕t

= −𝜕P(𝜔)
𝜕𝜔

;
𝜕Mx(𝜔)

𝜕t
= −𝜕K(𝜔)

𝜕𝜔
.

Here Q(𝜔), P(𝜔), and K(𝜔) have the meaning of the motion constants fluxes. They do not vanish at infinity
in the general case, that is, Q(∞) = Q > 0; P(∞) = P > 0; K(∞) = K > 0.

It was shown in Zakharov (2010) that the WKE can be presented in the form

𝜕N(𝜔, 𝜃)
𝜕t

= LÂ[N].

Here

L = 1
2

𝜕2

𝜕𝜔2 + 1
𝜔2

𝜕2

𝜕𝜃2 ,

while Â[N] = L−1Snl is the bounded positive nonlinear operator. The explicit expression for Â can be found
in Zakharov (2010).

Let us introduce

A(𝜔) = 1
2𝜋 ∫

2𝜋

0
Â(𝜔, 𝜃)d𝜃; B(𝜔) = 1

2𝜋 ∫
2𝜋

0
Â(𝜔, 𝜃) cos 𝜃d𝜃.

Then the fluxes are

Q(𝜔) = 𝜕A
𝜕𝜔

; P(𝜔) = −𝜔𝜕A
𝜕𝜔

− A; K(𝜔) = 𝜔

g

(
𝜕B
𝜕𝜔

− 2B
)
.

The following substitution

Â(𝜔, 𝜃) = 𝜔Q + P +
2Kg cos 𝜃

𝜔

generates exact solutions of equation (12) because

L
(
𝜔Q + P +

2Kg cos 𝜃
𝜔

)
= 0

if Q, P, and K are constants. This three-parameter family comprises the KZ solutions. Q, P, and K are the
fluxes of the motion constants. For this case, they are independent of the frequency 𝜔. The simplest and best
known solutions appear if Q = 0, K = 0

E(𝜔) =
4𝜋cpg4∕3P1∕3

𝜔4 . (18)

Here cp is the “first Kolmogorov constant.” This solution (18) was discovered analytically in Zakharov and
Filonenko (1966). The physical meaning of this solution is the assumption that some energy source of
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intensity P is present at low frequencies. The WKE governs the transfer of this energy to small wavelength
(high frequency) region. This is the “direct cascade,” which is quite similar to the classic Kolmogorov spec-
trum in the incompressible fluid turbulence theory. Such spectra need to be truncated at a certain frequency
𝜔 ∼ 𝜔p. They have a finite total energy Etot and some characteristic steepness 𝜇. Any spectrum of this type
creates a “KZ tail” (18) after some time, where

P = 𝛼𝜇4𝜔pEtot.

Here 𝛼 is a constant depending on the shape of the spectrum; 𝜇 is the steepness. These 𝜔−4 spectra (18) are
routinely observed both in wave tank experiments and in the ocean since at least 1971 (Forristall et al., 1978;
Liu, 1971). Sometimes they are called “Toba spectra” (Toba, 1972, 1973a, 1973b).

Phillips (1985) offered the another expression for the spectral tail

E(𝜔) =
𝛼g2

𝜔5 . (19)

Here 𝛼 ≃ 0.0081 is the universal Phillips' constant. But it was Phillips himself who claimed that his spectrum
is not more tenable and asserted that the Zakharov and Filonenko (1966) spectrum is routinely observed in
the range just behind the spectral peak. This bold statement does not diminish importance of the Phillips
spectrum. This asymptotics is observed for the utmost high frequency area 𝜔 > (4 ÷ 5)𝜔p, while in the
energy capacity spectral band, ZF spectrum (18) is realized (e.g., Forristall, 1981, Liu, 1989, Phillips, 1985,
Wang & Hwang, 2004) for the frequency band:

𝜔p < 𝜔 < 5𝜔p.

The Phillips spectrum describes shorter waves: the so-called Phillips sea (see Newell & Zakharov, 2008).

Another important KZ solution appears if one assumes P = 0, K = 0, Q > 0:

𝜀(𝜔) =
4𝜋cqQ1∕3

𝜔11∕3 . (20)

This solution describes an inverse cascade of wave action. It implies that there is a source of wave action at
high frequencies and a sink at 𝜔 = 0. In reality, this can be realized when the waves are excited at small
scales. This is the “second KZ solution,” similar to the inverse cascade of the wave energy in the theory of
2-D incompressible fluid turbulence. The solutions (18) and (20) are isotropic. The most generic isotropic
solution appears if

A = P + 𝜔Q.

Now

𝜀(𝜔) =
4𝜋cp

𝜔4 P1∕3F
(

Q𝜔

P

)
,

where F(𝜉) is an unknown positive function.

F(𝜉) → 1, 𝜉 → 0; F(𝜉) →
cq

cp
𝜉1∕3, 𝜉 → ∞.

The most general anisotropic KZ solution has the following form

𝜀(𝜔, 𝜃) = P1∕3

𝜔4 R
(
𝜔Q
P

,
gk
𝜔P

, 𝜃

)
.

Here R is a still unknown function, which can be found in the framework of the most simple diffusive model
of wave-wave interactions. Zakharov and Pushkarev (1999) suggested accepting

A = 𝛼𝜔15N3

g4 ,

ZAKHAROV ET AL. 6
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where 𝛼 is a tunable constant. Then

𝜀(𝜔, 𝜃) ==
g4∕3

𝛼1∕3
P1∕3

𝜔4

(
1 + 𝜔Q

P
+

2kg
𝜔P

cos 𝜃
)1∕3

.

Note that this solution is not positively defined when 𝜔 → ∞.

One important class of KZ solutions is the asymptotic KZ solutions for direct energy and momentum
cascades

𝜀(𝜔, 𝜃) = P1∕3

𝜔4 S
(

kg
𝜔P

, 𝜃

)
.

Kats and Kontorovich (1974) and Kats et al. (1975) have shown that in the limit of small anisotropy

S → 1 + c
gk cos 𝜃
𝜔P

+ … .

5. Self-Similar Solutions of WKE
Let us consider the homogeneous WKE

𝜕𝜀

𝜕t
= Snl. (21)

One can look for its solutions of the form (see Badulin et al., 2002, 2005; Zakharov, 2005, for details)

𝜀(𝜔, 𝜃) = atp+qF(𝜉, 𝜃); 𝜉 = b𝜔tq. (22)

Here a, b, p, and q are constants; F(𝜉, 𝜃) is some function of two variables. Homogeneity properties of the
collision integral for deep water waves dictate (e.g., Zakharov, 2010)

Snl ≃ 𝜔𝜀

(
𝜀𝜔5

g2

)2

≃ 𝜔𝜀𝜇4.

By plugging (22) to (21), one finds that the constants are connected by two relations

9q = 2p + 1; a = b9∕2.

Function F(𝜉, 𝜃) obeys the equation

11q − 1
2

F + q𝜉F𝜉 = Snl.

Let us define

A = ∫
F
𝜉

d𝜉d𝜃; B = ∫ F d𝜉d𝜃; C = ∫ 𝜉 cos 𝜃F d𝜉d𝜃.

Then, the following relations hold

N = b9∕2t(11q−1)∕2A; E = b7∕2t(9q−1)∕2B; M = b5∕2

g
t(7q−1)∕2C. (23)

The flux of wave action

Q = 𝜕N
𝜕t

=
11q − 1

2
b9∕2t(11q−3)∕2B.

If Q ≠ 0, the tail of the solution is 𝜀 ≃ Q4/3∕𝜔11/3. The spectrum must be positive, hence Q ≥ 0. The
marginal case Q = 0 is realized for q = 1∕11. In this case

𝜀(𝜔, 𝜃, t) = b9∕2t−1∕11F
(

b𝜔t−1∕11, 𝜃
)
. (24)

This self-similar solution describes the evolution of the swell. This was studied in detail by Badulin and
Zakharov (2017). As far as Q = 0, this solution is described by the KZ spectrum (20). If q > 1∕11, Q > 0,
then the self-similar solution exhibits the wave action source presence at 𝜔 → ∞.

ZAKHAROV ET AL. 7
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If q = 3∕11, Q = const, then

N ≃ t; E ≃ t8∕11; M ≃ t5∕11.

This is the regime when the wave action grows proportionally to time.

One more important case is realized if the wave energy grows proportionally to time. Now q = 1∕3, p = 1,
E ∼ t

q = 1
3
; P = const; E ∼ t; M ≃ t2∕3.

In this case the characteristic wave height H ≃ t1/2, while the characteristic period T ≃ t1/3, and we get the
famous “Toba law”

H ≃ T3∕2.

One more interesting case is q = 3∕7, p = 10∕7. Here M ∼ t, that is, the momentum grows proportionally
to time.

Now we discuss the self-similar solutions of the stationary inhomogeneous WKE, that is, the fetch-limited
scenario of wave evolution

2g
𝜔

cos 𝜃 𝜕𝜀
𝜕x

= Snl.

The self-similar solution has the following form

𝜀(𝜔, 𝜃, t) = B5xp+qG (𝜁, 𝜃) ; 𝜁 = B𝜔xq,

where p and q are connected by the magic relation

10q = 2p + 1.

The function G satisfies the equation

2
𝜁

[(
5q − 1

2

)
F + q𝜁 𝜕F

𝜕𝜁

]
= Snl.

Self-similar solution exists for any q ≥ 1∕12. The marginal case q = 1∕12 describes a stationary inhomo-
geneous swell (Badulin & Zakharov, 2017). Energy in this case decays as t−1/12. The Toba law H ≃ T3/2 is
realized if q = 1∕4, p = 3∕4.

Summarizing the previous results, one can assert that the “free” WKE both in stationary (“fetch-limited”)
and in homogeneous (“duration-limited”) cases has a two-parametric family of self-similar solutions.

Let us now study the forced homogeneous WKE

𝜕𝜀

𝜕t
= Snl + 𝛾𝜔s+1𝑓 (𝜃)𝜀 (25)

Here f(𝜃) is a normalized function of the angle, 2𝜋1∕2 ∫ 2𝜋
0 𝑓 (𝜃)d𝜃 = 1, and 𝛾 is a constant. Again, one can

look for a solution of the form

𝜀(𝜔, 𝜃, t) = 𝛽9∕2t(11q−1)∕2F (b𝜔tq, 𝜃) . (26)

Plugging (26) to (25), we find that such a solution exists if

q = 1
s + 1

; b = 𝛾1∕(1+s).

Function F satisfies the equation

11q − 1
2

F + q𝜉F𝜉 = Snl + 𝜉s+1𝑓 (𝜃)F; q = 1
s + 1

; b = 𝛾1∕(s+1).

ZAKHAROV ET AL. 8



Earth and Space Science 10.1029/2018EA000471

Thus, the forced WKE has only one self-similar solution. A similar statement is valid for stationary
self-similar solutions. In the stationary fetch-limited case

q = 1
s + 2

b = 𝛾1∕(s+2).

The self-similar solution of the WKE in the homogeneous ocean gives a characteristic frequency (we use the
spectral peak frequency 𝜔p below)

𝜔p = E
N

∼ t−q; q ≥ 1∕11,

hence, 𝜔p decreases with time. In the same way, in the stationary ocean

𝜔p = E
N

∼ 𝜒−q; q ≥ 1∕12,

the mean frequency decreases with fetch. This effect, which is known as downshift of the spectral peak, is
a universal phenomenon. Ocean waves have the tendency to increase their lengths (periods). This effect is
the most spectacular demonstration of the fact that the major process on the ocean surface is the four-wave
interaction, obeying the resonant conditions (5). Four-wave interaction preserves the wave action. The
presence of two motion constants forbids transport of energy only in one direction. A leakage of a small
amount of energy to the domain of small scales leads to the formation of an inverse cascade of energy to the
large scales.

A quite similar situation is realized in the theory of turbulence in a 2-D incompressible fluid. The presence
of two motion integrals, energy and enstrophy, causes leakage of enstrophy to small scales and downshift
of wave energy to large scales. This is the reason why large-scale structures like anticyclones are formed in
the atmosphere.

6. Numerical Modeling of Swell
The WKE ((8)–(10)) has been a subject for numerical simulation since the beginning of 1970s. Algorithms
and codes for its solution were elaborated by a number of research teams (e.g., Gagnaire-Renou et al., 2010;
Hasselmann & Hasselmann, 1981; Komatsu & Masuda, 1996; Lavrenov, 2003; Masuda, 1986; Tracy & Resio,
1982; Webb, 1978). In this paper we present the results of a numerical simulation of the WKE obtained using
two program codes. The first one is the well-known Webb-Resio-Tracy code (Tracy & Resio, 1982), modified
by our group. The second one is a new code developed by Geogjaev and Zakharov (2017). The latter is based
on direct integration over quadruplets, satisfying the resonant conditions (5). A detailed description of the
code will be published soon.

For comparison with theoretical results, we need the asymptotic behavior of the coupling coefficient Tkk1k2k3
in the case |k1| ≃ |k3| ≪ |k2| ≃ |k3|.

Tk1k2k3k4
= 1

2
k2

1k2T𝜃1 ,𝜃3
+ o(k2

1). (27)

For power-law distribution of the wave action

N = ak−x

the collision integral Snl can be presented in the following form (e.g., Geogjaev & Zakharov, 2017; Zakharov,
2010)

Snl = a3 g
3
2 k−3x+ 19

2 Fpow(x)

where Fpow is a dimensionless function depending of x only. This function calculated numerically (Geogjaev
& Zakharov, 2017) is shown in Figure 1. Using the asymptotics (27), one can find that the integrals in (11)
and (12) converge if

5∕2 < x < 19∕4,

ZAKHAROV ET AL. 9
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Figure 1. (a) Fpow function graph with its hyperbolic asymptotes. (b) The closeup of the function zeroes.

which is the domain of Fpow. According to the general theory (Zakharov et al., 1992) the function Fpow
has exactly two zeroes x = 4 and x = 23∕6. Corresponding KZ spectra have been written above (see (18)
and (20)). Spectral fluxes P0 (energy flux) and Q0 (wave action flux) can be derived analytically. Thus, the
dimensionless constants cp and cq can be expressed in terms of the first derivatives of function Fpow:

cp =

(
3

2𝜋F′
pow(4)

)1∕3

; cq =

(
3

2𝜋F′
pow(23∕6)

)1∕3

.

Our numerical calculation gives

cp = 0.203; cq = 0.194.

Now we present the results of the isotropic swell modeling with the Geogjaev code. The initial energy
spectrum shape

𝜀0(𝜔) =
{

2m2 · s, 0.2𝜋 < 𝜔 · 0.4𝜋
0, elsewhere

is presented in Figure 2a in logarithmic coordinates. The total wave action N = 1.44 m2s is the constant of
motion. Mean root square initial wave height Hrms =

√
E ≈ 1.13m and mean wave period characteristic

period Tm = 2𝜋N∕E ≃ 7 s give initial squared steepness 𝜇 = Hrmskm ≃ 0.091 (km corresponds to the
mean period Tm). Then we simulate the swell evolution for the time duration of 2 × 106 s or more than 3
weeks. The simulation was performed for the isotropic energy spectrum with 141 point grid. A set of 12,288
quadruplets was used to calculate the WKE collision integral. The parametric diagnostic tail𝜔−4 was applied
for frequencies higher than the upper bound of the discrete spectral grid. Variable time step of the WKE
integration was 1 s in the beginning and exceeded 1 hr at final stage of the spectrum evolution. As expected,
the strict constant of motion N remains constant within the numerical approach.

During the first quite short stage t ≲ 3, 300s (less than 1 day, see Figure 2a), the wave energy remains almost
constant as well as the initial spectral shape. Then the Zakharov-Filonenko spectrum 𝜀𝜔 ∼ 𝜔−4 forms, and

Figure 2. (a) The initial model spectrum 𝜀(𝜔); (b) Evolution of total energy at large times (logarithmic axes).
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Figure 3. (a) The compensated spectrum 𝜀𝜔4∕g2 at t = 50, 000 s; (b) collision integral Snl being split into FK and
ΓKEK (see equations (11) and (12)) at t = 50, 000 s.

the energy begins to decay. During the second transitional stage 3, 300 s < t < 50, 000 s (Figure 2a), the
spectrum keeps its universal form near the spectral peak, while in the high frequency band, the solution
continues to tend to the Zakharov-Filonenko spectrum. For larger time, the spectrum shows pronounced
features of self-similarity. The wave action is preserved, and the energy decays like t−1/11 (see Figure 2b and
equation (24)). The mean (spectral peak) frequency also decays like t−1/11 as well as the mean steepness
follow the corresponding power-like asymptotics

𝜇 ∼ t−5∕11.

Notice that both observed times T1 = 3, 300 s and T2 = 50, 000 s can be compared with the characteristic
time of the four-wave nonlinear interactions (Zakharov & Badulin, 2011)

Tc ≃
1

𝜔p𝜇
4 ≃ 104s.

Figure 3a presents the compensated spectrum 𝜀(𝜔)𝜔4∕g2 at t = 50, 000 s. One can see that the 𝜔−4

asymptotics are perfectly realized.

The two panels of Figure 3 are seminally important. They are made at t = 50, 000 s. Figure 3a shows quite
good correspondence of the numerical solution to the direct cascade solution of Zakharov and Filonenko
(1966). Figure 3b presents Snl together with its split to the income and outcome terms. It is clearly seen that
Snl → 0 for 𝜔 > 𝜔p. But their income and outcome components are not small asymptotically. They are large
but almost compensate each other.

In the next series of numeric experiments, we have studied the evolution of anisotropic swell (Badulin &
Zakharov, 2017). As it was expected, we observed the formation of the self-similar solution with the Zakharov
and Filonenko (1966) asymptotics.

7. Numerical Simulation of Wind-Driven Waves
To apply the free kinetic equations (9) and (10) to the real ocean, one should supplement it with source terms

𝜕N
𝜕t

= Snl + Ssource.

The source term consists of two components

Ssource = Sin + Sdiss

The term Sin describes the wave generation by the wind. Excluding catastrophic events like earthquakes,
landslides, and so forth, the wind remains the single cause of the ocean surface wave excitation. It is a slow
process due to the smallness of the air-water densities ratio. Waves achieve the saturation during approxi-
mately 10 thousand of their periods. The oceanographic community spent a lot of efforts on the construction
of the algebraic model for Sin.

ZAKHAROV ET AL. 11
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Figure 4. (a) Wind wave growth rates given by different parametric formulas (see legend). (b) Comparison of the
experimental data on the wind-induced growth rate 2𝜋𝛾 in(𝜔)∕𝜔 taken from Komen et al. (1995) and the damping due
to four-wave interactions, calculated for the narrow in angle spectrum at 𝜇 = 0.05 using equation (12) (dashed line).

It is the common belief that waves are generated due to atmospheric boundary layer instability development
(e.g., Miles, 1957). It assumes that the corresponding source function Ssource depends linearly on spectrum

Sin = 𝛾in(𝜔, 𝜃)𝜀(𝜔, 𝜃). (28)

At least dozen of different models for 𝛾 in were offered by different authors during the last century (since
the seminal papers of Jeffreys (1925, 1926). Figure 4a shows a collection of such dependencies in terms of
the dimensionless frequency 𝜔k∕𝜔p for wind speed at standard height 10 m U10 = 10m · s−1 and wave age
U10∕Cp = 0.7. All these dependencies have been obtained experimentally under very different conditions
of the turbulent atmospheric boundary layer near the sea surface (the vertical temperature distribution and
the distance to the coastline). None of these dependencies were rigorously justified (see the discussion in
Pushkarev & Zakharov, 2016). Moreover, the very existence of the universal 𝛾 in is not clear.

After including Sin in the WKE (10), we obtain

Snl = Fk + (𝛾in − Γk)Nk. (29)

Equation (29) shows that energy input from the wind is compensated by the nonlinear damping Γk. Hence,
it is important to compare 𝛾 in. It was shown (Zakharov & Badulin, 2011) that for 𝜔 ≫ 𝜔p

Γ
𝜔

≃ C𝜇4
(

𝜔

𝜔p

)3

.

The coefficient C depends on the shape of spectrum. It was shown numerically that it is large. For a narrow
angle spectrum, C > 100 and, for the isotropic spectra, C is approximately 40% less. As the result,Γ surpasses
𝛾 in by at least one order of magnitude (see Figure 4b).

The domination of Γ over 𝛾 in leads to the extremely important conclusion:

The main process in the wind-driven sea is the competition of the income and outcome terms in Snl. In fact,
typical ocean spectra are the self-similar spectra or combination of those. Parameters of these spectra are defined
by the wind interaction.

The second source term Sdiss describes the loss of the wave energy. Such process takes place in the ocean,
for sure, but its role in the total balance of wave energy is overestimated. The most popular model (Komen
et al., 1984) for Sdiss is realized in the WAM-3 wave predicting operational model. In this model

Sdiss = 𝛾diss𝜀(𝜔, 𝜃); 𝛾diss = 1.6𝜔
(

𝜔

𝜔p

)2

𝜇4. (30)

We are skeptical about this expression for 𝛾diss. It is neither supported by theory or experimental obser-
vations. It is a purely artificial construction, based on strong belief that the evolution of any wind-forced
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Figure 5. (a) Frequency spectrum for fetch-limited case at U10 = 10 m/s (solid line), spectrum ∼ f−4 (dashed line),
∼ f−5 (dash-dotted line). (b) Dimensionless energy Eg2∕U4

10 versus dimensionless fetch 𝜒 = xg∕U2
10 (left vertical axis):

U10 = 10 m/s (solid line), U10 = 5 m/s (dash-dotted line). Self-similar solution with the empirical coefficient
2.9 · 10−7xg∕U2

10 (dashed line). U10 = 10 m/s (solid line), U10 = 5 m/s (dashed line). Right vertical axis corresponds to
the “magic number” 10q − 2p versus the dimensionless fetch 𝜒 for fetch-limited case. U10 = 10 m/s (dotted line),
U10 = 5 m/s (dash-triple-dotted line).

spectrum must end up by the formation of the “fully developed sea.” This concept looked obvious back in
1984 (Komen et al., 1984) and now, likely, requires substantial revision. Phase-resolving numerical model-
ing of JONSWAP spectrum evolution (e.g., Dyachenko et al., 2015; Korotkevich et al., 2008) found that the
term (30) can overestimate the dissipation due to the wave breaking by the order of magnitude. Summa-
rizing, we conclude that the instability, driven by the wind input, is arrested not by white capping but by
the resonant nonlinear interactions. Numerous white-capping wave breakings form the short-scale Phillips
spectrum 𝜔−5 (Newell & Zakharov, 2008) and act like a universal sink of energy.

We present below the results of numeric simulation of the stationary WKE.

As an alternative to multiple wind source terms, noncompliant with the set of nonlinear tests (see Pushkarev
& Zakharov, 2016), the new ZRP wind-input source term, constructed through the self-similarity analysis
of Hasselmann equation, has been proposed (Zakharov et al., 2017):

𝛾

𝜔
= 0.05

𝜌a

𝜌w

(
𝜔

𝜔0

)4∕3

; Sin(𝜔, 𝜃) = 𝛾(𝜔, 𝜃) · 𝜀(𝜔, 𝜃), (31)

𝛾(𝜔, 𝜃) =

{
0.05 𝜌a

𝜌w
𝜔

(
𝜔

𝜔0

)4∕3
q(𝜃), for𝑓min ≤ 𝑓 ≤ 𝑓d, 𝜔 = 2𝜋𝑓

0 otherwise,
(32)

q(𝜃) =
{

cos 2𝜃 for − 𝜋/4 ≤ 𝜃 ≤ 𝜋/4
0, otherwise

; 𝜔0 =
g

U10
,
𝜌a

𝜌w
= 1.3 · 10−3, (33)

where 𝜌a and 𝜌w are the air and water density correspondingly. Frequencies fmin and fd depend on the wind
speed and should be found empirically: The wind speed at 10-m height was taken as U10 = 10 m/s and
U10 = 5 m/s, fmin = 0.1 Hz.

The dissipation was chosen in the “implicit” form: the dynamical part of the spectrum was continued from
fd = 1.1 Hz (Resio et al., 2004) by Phillips (1985) spectrum 𝜀(f, 𝜃) ∼ 𝜔−5, decaying faster than the equilibrium
spectrum 𝜀(f, 𝜃) ∼ 𝜔−4 and providing therefore high-frequency dissipation (Pushkarev & Zakharov, 2016).

This numerical experiment confirmed major predictions of the WTT. Figure 5a shows the formation of KZ
spectra. Dimensionless wave energy as function of dimensionless fetch for different wind speeds and cor-
responding values of the power laws indices as well as the “magic relations” are shown in Figure 5b as the
arguments for asymptotic convergence to the predicted value.
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8. Experimental Evidence of Snl Domination
In the previous chapter we have shown analytically and numerically that the Snl term dominates over
Sin term. As Sdiss in the Hasselmann sea cannot be stronger than 𝛾 in (otherwise the waves would not be
exited), the term Snl dominates over Sdiss too. Both the source term and nonlinear wave interaction are the
dominating physical processes that take place in a wind-driven sea.

This fact is supported by convincing experimental data, collected in a broad ranges of wind velocities:
3 m/s < U10 < 30 m/s. Following Kitaigorodskii (1962), we will use hereafter the dimensionless duration
and fetch, as well as the dimensionless frequency and energy.

𝜏 =
tg
U
; 𝜉 =

xg
U2 ; 𝜎 = 𝜔U

g
; F =

𝜀g2

U4 . (34)

We also introduce integral dimensionless quantities

F̃ = ∫
∞

0
F(𝜎)d𝜎; �̃� = 1

F̃ ∫
∞

0
𝜎F(𝜎)d𝜎; 𝜇p = F𝜎. (35)

During the last seven decades, many experiments on the measurement of wave energy spectra and their
integral characteristics have been performed in wind-driven seas, laboratories, and lakes. The most signifi-
cant experiments were conducted in the “fetch-dominated frame,” where the sea is stationary in time and
the wind blows perpendicular to a coast line. In these challenging and expensive experiments, F̃ and �̃� were
measured as functions of the dimensionless fetch only: F̃ = F̃(𝜉), �̃� = �̃�(𝜉) following the Kitaigorodskii
(1962) similarity approach. Generally, these dependencies are approximated by power-like functions

F̃ = 𝜖0𝜉
p; �̃� = 𝜔0𝜉

−q. (36)

In all the experiments, the exponents p and q vary inside the following ranges:

0.7 < p < 1.1; 0.22 < q < 0.33. (37)

Let us assume that the observed energy spectra are described by self-similar solutions of the stationary WKE,
supplied with the wind pumping increment (31)

Sin = m
𝜌a

𝜌w

(
𝜔

𝜔c

)1+l

𝜀(𝜔, 𝜃).

Here m is some unknown constant. It means that

q = l
2 + l

p = 8 − l
2(2 + l)

,

where p and q are connected by the magic relation

q = 2p + 1,

and another relation, excluding an indefinite constant b in (23)

𝜀
1∕5
0 𝜔0 = S. (38)

This S in (38) is a constant of the order one. It might depend slowly on p.

Results of 23 experiments performed in the open sea and Lake Michigan are presented in Table 1, which
represents the majority (but not all) of field experiments collected in physical oceanography for almost half
a century (see, for reference, Badulin et al., 2007). Experimental data are compared with the predictions of
the analytic theory presented in this paper. According to the theory, the exponents q𝜒 must coincide with
the theoretically predicted value qth = 2px + 1∕10. One can see that the relative difference z𝜒 ≃ 1

q𝜒
|q𝜒 −qth|

does not exceed 10%. According to the theory, the dimensionless quantity S = 𝜖1/5𝜔0 must be a constant
of the order one that is supported by Table 1 fairly well. A more accurate theoretical value of S (which is
actually a slowly varying function of p) will be presented shortly.
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Table 1
Collection of Wind Sea Experiments

Case 𝜀0 × 107 p𝜒 𝜔0 q𝜒 qth 𝛼ss z𝜒 S

1.1 Black.Sea 4.410 0.890 15.14 0.28 0.28 0.65 0.010 0.81
1.2 Walsh, U.S. coast (1989) 1.860 1.000 14.45 0.29 0.30 0.30 0.033 0.65
1.3 Kahma and Calkoen (1992) unstable 5.400 0.940 14.20 0.28 0.29 0.59 0.027 0.79
1.4 Kahma and Calkoen (1992) stable 9.300 0.760 12.00 0.24 0.25 0.52 0.040 0.75
1.5 Romero and Melville(2009) stable 9.230 0.740 8.93 0.22 0.25 0.20 0.093 0.55
1.6 Romero and Melville (2009) unstable 5.750 0.810 10.64 0.23 0.26 0.25 0.107 0.60
2.1 Dobson et al. (1989) 12.70 0.750 10.68 0.24 0.25 0.44 0.033 0.71
2.2 Kahma and Pettersson (1994) 5.300 0.930 12.66 0.28 0.29 0.40 0.020 0.70
2.3 Davidan (1980), equations (6) and (8) 4.40 0.84 16.00 0.28 0.30 0.75 0.067 0.86
2.4 JONSWAP no lab (Phillips, 1977) 2.600 1.000 11.18 0.25 0.30 0.16 0.167 0.54
2.5 Kahma and Calkoen (1992) composite 5.200 0.900 13.70 0.27 0.28 0.52 0.033 0.76
2.6 Donelan et al. (1985) 8.410 0.760 11.60 0.23 0.25 0.43 0.073 0.71
2.7 SMB CERC (1977) by Young 7.820 0.840 10.82 0.25 0.27 0.32 0.060 0.65
3.1 Wen et al. (1989) 18.90 0.700 10.40 0.23 0.24 0.53 0.023 0.75
3.2 Evans and Kibblewhite (1990) neutral 2.600 0.872 18.72 0.30 0.27 0.94 −0.085 0.90
3.3 Evans and Kibblewhite (1990) stratified 5.900 0.786 16.27 0.28 0.26 1.05 −0.076 0.92
3.4 Kahma (1981, 1986) rapid growth 3.600 1.000 20.00 0.33 0.30 1.38 −0.100 1.03
3.5 Kahma (1986) average growth 2.000 1.000 22.00 0.33 0.30 1.29 −0.100 1.01
3.6 Donelan et al. (1992) 1.700 1.000 22.62 0.33 0.30 1.27 −0.100 1.00
3.7 Hwang and Wang (2004) 6.191 0.811 11.86 0.24 0.26 0.37 0.084 0.68
3.8 Ross (1978) Michigan unstab 1.200 1.100 11.94 0.27 0.32 0.12 0.167 0.49
3.9 Liu and Ross(1980) stratification 0.680 1.100 12.88 0.27 0.32 0.10 0.167 0.47
3.10 Liu and Ross(1980) Babanin's fit 77.0 0.520 2.36 0.08 0.20 0.01 0.413 0.22
3.11 Davidan (1996), u∗ scaling 794.0 1.000 9.16 0.34 0.30 3.74 −0.133 1.39
3.12 Davidan (1996), U10 scaling 5.550 0.840 16.34 0.29 0.27 1.00 −0.073 0.92
4.1 JONSWAP (1973) 2.890 1.008 19.72 0.33 0.30 1.14 −0.095 0.97
4.2 Mitsuyasu (1971) 1.600 1.000 21.99 0.33 0.30 1.11 −0.100 0.96

One can supplement the Table 1 with the composite data presented in the monograph by Young (1999) in
page 105. This is the result obtained by the author by averaging over many field experiments. According to
Young (1999):

p𝜒 = 0.8; q𝜒 = 0.25; 𝜖0 = 7.5 · 10−7; 𝜔0 = 12.56; S = 0.75.

Theory predicts qth = 0.26, S ≃ 1. These data support our statement on the dominance of the nonlinear
resonant process over the wind income. Other experimental and numerical data supporting our theory are
collected in Badulin et al. (2007). In the field experiments, presented in Table 1, the dimensionless fetch 𝜒

varies in the range 102 < 𝜒 < 105.

9. Conclusion
We have developed a quite simple theory. The only empiric parameters of the theory are m and l, con-
tained in the shape of the wind-input term. The theory does not consider the problem of the individual
wave-breaking event and, therefore, contains no explicit parameterization of white-capping dissipation
source term. Instead, we used the implicit dissipation term in the form of the Phillips continuation of the
dynamical part of the spectrum, replicating main properties of white-capping dissipation and playing the
same role as the viscosity at large Reynolds numbers in the theory of turbulence.

This simplified theory explains the following fundamental facts.

• Universality of energy spectra in the spectral band 𝜔p < 𝜔 < 5𝜔p. The explanation is simple: The 𝜔−4

spectrum is the exact solution of the WKE;
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• Power-like dependence of the wave energy and mean frequency of the fetch. The explanation is simple
again: The fetch-limited spectra are described by self-similar solutions of WKE.

We think that these results are quite impressive, and we have ambitious plans. We hope that careful study
of anisotropic KZ spectra will explain angular spreading of the spectra, increasing with the frequency. And
we hope that our new numerical code will help to advance in understanding of wave problems as well as
wave forecasting models progress.
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