- **Тема работы:** Тестирование точности явно коррелированных CCSD(T)-F12 процедур для расчетов активационных барьеров реакций термического разложения алифатических нитросоединений.
- **Состав коллектива:** Киселев Виталий Георгиевич, к.ф.-м.н., с.н.с. лаборатории структуры и молекулярных свойств функциональных систем ФФ НГУ, ст. преп. кафедры химической и биологической физики ФФ НГУ, с.н.с. лаборатории механизмов реакций ИХКГ СО РАН.
- Научное содержание работы:
- 1. **Постановка задачи.** Протестировать точность явно коррелированных CCSD(T)-F12 процедур и широко используемых функционалов DFT по сравнению с современным стандартом термохимических расчетов CCSD(T), экстраполированным к бесконечному базисному набору.
- 2. Современное состояние проблемы. Применение модификаций высокоточного квантовохимического метода CCSD(T) с явным учетом электронной корреляции (CCSD(T)-F12) позволяет значительно уменьшить размер базисного набора (а следовательно, и затраты времени/ресурсов) при сохранении «химической» точности расчетов (~1 ккал/моль). В данной работе исследована точность данного подхода в применении к реакциям термического разложения алифатических полинитросоединений простых прототипов практически важных энергетических материалов.
- 3. Подробное описание работы и основные результаты. Для проверки точности различных квантовохимических процедур первоначально были проведены тестовые расчеты и сравнение с экстраполяцией к бесконечному базисному набору CCSD(T)/CBS (aVTZ:aVQZ), а также с широко используемыми функционалами DFT PBEO и M06-2X. Такие методы являются «золотым стандартом» современной вычислительной термохимии и требуют значительных затрат вычислительных ресурсов. Результаты представлены в таблице 1. Видно, что результаты CCSD(T)-F12 расчетов с базисами VDZ-F12 и VTZ-F12 находятся в прекрасном согласии как между собой, так и с наиболее точными процедурами CCSD(T)/CBS.

Таблица 1. Энтальпии активации некоторых термических реакций полинитроалканов и нитроэтилена при температруре 298 К ($\Delta^{\sharp}H^{0}$), рассчитанные с помощью различных вариантов методов CCSD(T), CCSD(T)-F12 и DFT. Для безбарьерных реакций радикального распада в скобках приведены стандартные энтальпии реакций ($\Delta_{r}H^{0}$). Все значения в ккал/моль.

Реакции	$\Delta^{\neq} H_0^0 (\Delta^r H_0^0)$, kcal/mol				
	CCSD(T)/ CBS(T,Q) ^{a,b}	CCSD(T)-F12/ CBS(D,T) ^{a,b}	CCSD(T)-F12/ VDZ-F12 ^b	PBE0 ^c	M06-2X ^d
$\begin{array}{c} \hline C_3H_7C(NO_2)_3 \to \bullet C_3H_7C(NO_2)_2 + \bullet NO_2 \ (R1)^e \\ C_3H_7C(NO_2)_3 \to C_3H_6 = C(NO_2)_2 + HONO \ (R3)^e \\ C_3H_7C(NO_2)_3 \to C_3H_7C(NO_2)_2ONO \ (R2)^e \\ \hline \end{array}$			(44.0) 42.7 59.5	(35.0) 37.9 59.2	(44.0) 41.7 62.1
$CH(NO_2)_3 \rightarrow \bullet CH(NO_2)_2 + \bullet NO_2$		(46.5)	(46.0)	(38.9)	(46.1)
$CH(NO_2)_3 \rightarrow C(NO_2)_2N(O)OH$		50.4	50.7	45.7	48.7
$CH(NO_2)_3 \rightarrow CH(NO_2)_2ONO$		61.1	60.5	60.6	62.8
$CH_3CH(NO_2)_2 \rightarrow \bullet CH_3CH(NO_2) + \bullet NO_2$		(48.5)	(47.8)	(41.1)	(47.4)
$CH_3CH(NO_2)_2 \rightarrow CH_2=CH(NO_2) + HONO$		44.4	45.0	41.3	43.6
$CH_2(NO_2)_2 \rightarrow \bullet CH_2(NO_2) + \bullet NO_2$	(49.1)	(49.3)	(48.6)	(44.3)	(48.8)
$CH_2(NO_2)_2 \rightarrow CH(NO_2)N(O)OH$	54.7	54.7	54.8	51.1	53.2
$CH_3CH_2NO_2 \rightarrow \bullet CH_3CH_2 + \bullet NO_2 (NE1)$	(61.0)	(61.1)	(60.2)	(57.5)	(62.1)
$CH_3CH_2NO_2 \rightarrow CH_2=CH_2 + HNO_2 (NE2)$	47.4	47.3	47.8	45.6	47.0

^а Использована экстраполяция aVTZ:aVQZ. ^b Для расчета энергии методом CCSD(T)-F12b/aug-cc-pVTZ использована геометрия, оптимизированная методом M06-2X/6-311++G(2df,p). ZPE

и термические поправки к энергии рассчитаны этим же методом. c Д Использован метод PBEO/6-31+G(d). d Использован метод M06-2X/6-311++G(2df,p). e Обозначения реакций в соответствии с работой (Phys. Chem. Phys., 2014, 16, 6614).

Таким образом, тестирование на наборе алифатических нитроалканов показало прекрасное (в пределах 1 ккал/моль) согласие результатов CCSD(T)-F12-расчетов даже с небольшим базисным набором (VDZ-F12) и наиболее точных и трудозатратных CCSD(T)/CBS(T,Q) вычислений. Сравнение полученных в данной работе CCSD(T)-F12/VDZ-F12 активационных барьеров первичных реакций термолиза тринитробутана с результатами DFT-расчетов методом PBEO недавней работы (G. Fayet, P. Rotureau, B. Minisini, Phys. Chem. Chem. Phys., 2014, 16, 6614) показало, что последние значительно занижены (ср. зеленые и красные величины в табл. 1). При этом расхождение между точным результатами и PBEO-расчетами растет по мере увеличения числа нитрогрупп в системе (табл. 1). В то же время, функционал М06-2X позволяет получить результаты с неплохой средней точностью (около 2 ккал/моль) при сравнительно небольших затратах ресурсов. Установлено, что механическое применение метода PBEO для исследования кинетики термолиза полинитроалканов приводит к существенным искажениям расчетных соотношений констант скорости различных каналов и завышает константы скорости радикальных реакций.

- Использование кластера: все расчеты методами CCSD(T) и CCSD(T)-F12/aVTZ проведены на кластере с использованием пакета MOLPRO 2010. Эти расчеты играют ключевую роль в обсуждении результатов работы.
- Перечень публикаций: V.G. Kiselev, Comment on "Decomposition mechanisms of trinitroalkyl compounds: a theoretical study from aliphatic to aromatic nitro compounds" by G. Fayet, P. Rotureau, B. Minisini, Phys. Chem. Chem. Phys., 2014, 16, 6614. Phys. Chem. Chem. Phys. 2015, 17, 10283—10284. DOI: 10.1039/c4cp04999c. (импакт-фактор 4.493).