ОТЧЕТ О ПРОДЕЛАННОЙ РАБОТЕ С ИСПОЛЬЗОВАНИЕМ ОБОРУДОВАНИЯ ИВЦ НГУ

1. Аннотация

Несмотря на то, что кристаллы NaBa₁₂(BO₃)₇F₄ (NBBF) не содержат каких-либо ионов-хромофоров и должны быть номинально бесцветными, их цвет меняется от темнофиолетового до светло-розового в зависимости от соотношения соединений BaO, BaF₂, B₂O₃, и Na₂O в исходных высокотемпературных растворах. Было проведено исследование оптической прозрачности, электронных свойств и спектров комбинационного рассеяния света (КР) с возбуждением на 532 нм и 325 нм для кристаллов NBBF разного цвета. Все активные КР моды, определенные для исходной структуры NBBF с помощью расчетов из первых принципов (*ab initio*) в рамках теории функционала плотности, совпадают с наблюдаемыми модами в экспериментальных спектрах. Однако, помимо мод, характерных для ортоборатов, в резонансных спектрах КР интенсивно окрашенных кристаллов появляются дополнительные сильные моды и их обертоны. Эти моды объясняются присутствием дополнительной боратной группы в каналах структуры.

Таким образом, на основе *ab initio* моделирования установлена причина изменения оптических свойств функциональных боратов с антицеолитной структурой.

Тема работы

Исследование дефектной структуры кристаллов фторидоборатов натрия-бария $NaBa_{12}(BO_3)_7F_4$ (NBBF).

2. Состав коллектива

- 1. Беккер Татьяна Борисовна, Новосибирский Государственный Университет, Институт Геологии и Минералогии им. В.С. Соболева СО РАН, в.н.с.
- 2. Литасов Константин Дмитриевич; Новосибирский Государственный Университет, в.н.с.
- 3. Гаврюшкин Павел Николаевич; Новосибирский Государственный Университет, Институт Геологии и Минералогии им. В.С. Соболева СО РАН; доцент, с.н.с.
- 4. Сагатов Нурсултан; Новосибирский Государственный Университет, Институт Геологии и Минералогии им. В.С. Соболева СО РАН, н.с.

3. Научное содержание работы

3.1. Постановка задачи

Проведение моделирования в рамках теории функционала плотности фторидобората NBBF с целью установления влияния дефектной структуры на свойства.

3.2. Современное состояние проблемы

Кристаллы боратов демонстрируют невероятное разнообразие применений. В настоящее время бораты являются непревзойденной кристаллической средой для нелинейно-оптического преобразования инфракрасного лазерного излучения в видимую и УФ-области и являются основными компонентами поляризующей УФ-оптики. Это обусловлено удачным сочетанием свойств, а именно: широким диапазоном прозрачности, высоким порогом лазерно-индуцированного повреждения, относительно высоким двулучепреломлением и приемлемыми значениями нелинейно-оптических коэффициентов. Среди наиболее промышленно значимых оптических боратов — α - и β - модификации метабората бария BaB_2O_4 и трибората лития LiB_3O_5 после открытия которых постоянно ведутся поиски новых функциональных боратов [1-3].

Относительно новым и активно развивающимся направлением является использование кристаллов боратов в качестве матриц для создания белых светодиодов. Кристаллы боратов используются для получения люминофоров как для композитных красно-зелено-синих (RGB) [4–7], так и для одноматричных белых светоизлучающих светодиодов [10–14].

Объектом данного исследования является высоко необычный кристалл бората, NaBa₁₂(BO₃)₇F₄ (пространственная группа P4₂bc), который демонстрирует так называемую «антицеолитовую» структуру. В отличие от традиционных цеолитовых кристаллов с отрицательно заряженным каркасом, «антицеолитовые» бораты построены из положительно заряженного каркаса, который размещает в себе некаркасные анионные группы для электростатической компенсации заряда [15].

3.3. Подробное описание работы, включая используемые алгоритмы

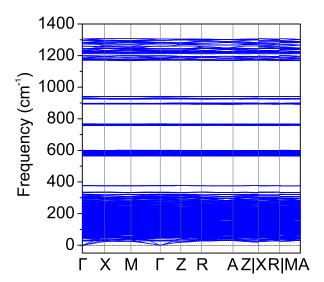
Расчеты выполнены в рамках теории функционала плотности (DFT), реализованной в пакете VASP 5.4.4 [16, 17]. Эффекты обмена и корреляции учитывались в обобщенном градиентном приближении по схеме Перью–Берка–Эрнзерхофа [18]. Электрон-ионное взаимодействие описывалось с использованием метода проекторных присоединенных волн (PAW) со следующими конфигурациями валентных электронов атомов: $5s^25p^66s^2$ для Ba, $2s^22p^1$ для B, $2s^22p^4$ для O, $2s^12p^0$ для Li и $2s^22p^5$ для F.

Оптимизация структур проводилась путем релаксации структурных параметров и атомных координат с использованием алгоритма сопряженных градиентов с максимально

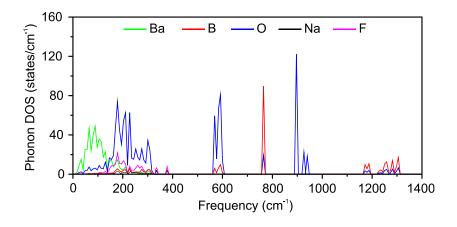
допустимыми отклонениями по энергии 1.0×10^{-7} эВ и по напряжению 0.01 ГПа. Силы взаимодействия между атомами были минимизированы до значения 0.005 эВ/Å. Энергия отсечки была установлена на уровне 700 эВ. Использовалась стандартная сетка Монкхорста—Пака [19] с размером $4 \times 4 \times 4$. Для сглаживания электронного спектра применялась техника Гауссова сглаживания с параметром размытия $\sigma = 0.05$ эВ.

Кривые фононного спектра и плотность фононных состояний были рассчитаны с использованием программы Phonopy [20]. Спектры комбинационного рассеяния (Рамановские спектры) были получены с помощью кода vasp_raman.py [21] путем расчета тензоров диэлектрической проницаемости для каждой колебательной моды. Для согласования с экспериментальным спектром, рассчитанный Рамановский спектр был калиброван с использованием масштабного коэффициента, представляющего собой отношение положений наиболее интенсивных пиков в экспериментальном и расчетном Рамановских спектрах. В данном исследовании масштабный коэффициент составил 1,018. Анимация и визуализация активных Рамановских колебаний были выполнены с помощью инструментов VaspVib2XSF [22], Phonopy [23] и OVITO [24].

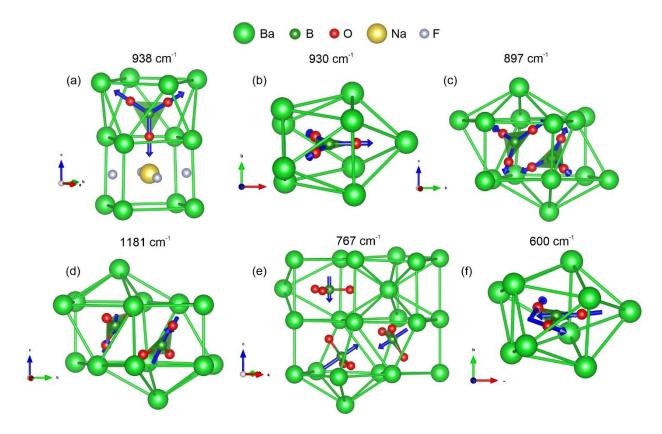
Поскольку использование функционала PBE имеет тенденцию к сильному занижению ширины запрещенной зоны, для расчета плотности состояний (ПС) и зонной структуры соединения NBBF использовался гибридный функционал HSE06. Для расчетов с HSE06 использовались геометрии, оптимизированные с помощью PBE. Расчеты с гибридным функционалом проводились только в Г-точке зоны Бриллюэна с энергией отсечки 500 эВ. Путь в зоне Бриллюэна высокой симметрии для расчета электронной зонной структуры был сгенерирован с помощью инструмента VASPKIT.


3.4. Полученные результаты

Рассчитанные кривые фононного спектра представлены на **Рис. 1**. Отсутствие мнимых частот в фононном спектре очевидно, что указывает на динамическую устойчивость структуры и обоснованность последующего расчета спектра комбинационного рассеяния.


Поскольку примитивная ячейка $NaBa_{12}(BO_3)_7F_4$ содержит 180 атомов, фононный спектр насчитывает 540 колебательных мод. С учётом вырожденных Е-мод это число сокращается до 400 мод, имеющих следующее неприводимое представление: $\Gamma = 65A_1 + 65A_2 + 65B_1 + 65B_2 + 140E$. Первые 2 акустические моды (Гакустические = $A_1 + E$) представляют движение центра масс, в то время как 398 оптических мод (Гоптические = $64A_1 + 65A_2 + 65B_1 + 65B_2 + 139E$) характеризуют относительное движение атомов. Согласно анализу симметрии и представлений для $NaBa_{12}(BO_3)_7F_4$, существует 333 активных в

рамановском спектре колебательных моды (ГРаман = $64A_1 + 65B_1 + 65B_2 + 139E$), 203 активных в ИК-спектре моды (ГИК = $64A_1 + 139E$) и 65 неактивных ("молчащих") мод (Гнеактивные = $65A_2$).


Анализ плотности фононных состояний (**Puc. 2**) показывает, что вклад в оптические моды в высокочастотной области свыше 500 см⁻¹ вносят колебания атомов В и О. В частности, моды в диапазоне 1165–1313 см⁻¹ и с максимумом при 767 см⁻¹ обусловлены главным образом колебаниями атомов В, в то время как моды с максимумами при 938, 929, 897 см⁻¹ и в диапазоне 561–608 см⁻¹ вызваны колебаниями атомов О в [ВО₃]-группах. Пики в фононном спектре при 378 и 336 см⁻¹ обусловлены колебаниями атомов Na и F. Низкочастотная область ниже 324 см⁻¹ формируется за счёт колебаний всех атомов. В частности, моды в диапазоне 139–324 см⁻¹ связаны в основном с колебаниями атомов В и F, тогда как моды ниже 139 см⁻¹ – преимущественно с колебаниями атомов Ва.

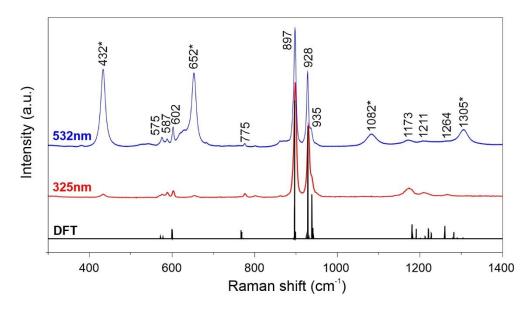

Рис. 1. Фононный спектр NaBa₁₂(BO₃)₇F₄.

Рис. 2. Плотность фононных состояний NaBa₁₂(BO₃)₇F₄.

Рис. 3. Смещение атомов для избранных мод комбинационного рассеяния кристалла $NaBa_{12}(BO_3)_7F_4$: (a) 938 см⁻¹, (b) 930 см⁻¹, (c) 897 см⁻¹, (d) 1181 см⁻¹, (e) 767 см⁻¹, и (f) 600 см⁻¹.

Рис. 4. Экспериментальные спектры соединения NBBF-I при возбуждении 532 нм и 325 нм в сравнении с рассчитанными (DFT) спектрами комбинационного рассеяния

(Рамана) чистого NaBa₁₂(BO₃)₇F₄. Пики, отмеченные звёздочкой, в соответствии с проведёнными расчётами не могут быть описаны колебаниями в чистом NaBa₁₂(BO₃)₇F₄.

Измерение КР спектров проводили на пластинках, ориентированных параллельно оси z, в поляризованном свете при возбуждении 532 нм и 325 нм. В КР спектрах кристаллов NBBF наиболее интенсивные пики наблюдаются при 897 и 928 см⁻¹ как для возбуждения 532, так и для 325 нм. Эти результаты хорошо согласуются с результатами проведенных нами ab initio расчетов с применением теории функционала плотности (DFT), а также с литературными данными, указывающими на то, что симметричные валентные колебания групп [ВО₃] доминируют в спектрах ортоборатов. Обращает на себя внимание тот факт, что при возбуждении 532 нм в КР спектрах кристаллов присутствуют дополнительные пики при 432 см⁻¹ и 653 см⁻¹ и их обертона, наиболее интенсивно проявленные для кристаллов NBBF-1 и NBBF-2 (Рис. 3,4, Таблица 1). Высокая интенсивность дополнительных мод при 432 ${\rm cm}^{-1}$ и 653 ${\rm cm}^{-1}$ при возбуждении 523 нм объясняется резонансным комбинационным рассеянием. При возбуждении 325 нм комбинационное рассеяние нерезонансное, интенсивность пиков при 432 cm^{-1} и 653 cm^{-1} резко падает для кристаллов NBBF-1 и NBBF-2, в кристалле NBBF-3 они практически отсутствуют. Анализ спектров комбинационного рассеяния позволяет предположить, что дополнительные моды могут быть связаны с присутствием дополнительных боратных групп в структуре соединения. Эти группы могут замещать группу [NaF₄]³⁻ в каналах структуры, что подразумевает определенный недостаток ионов натрия. Дефицит натрия подтверждается составом темно-бордовых кристаллов (Ba : Na = 12 : 0.90(4)), показывающим, что содержание натрия в них на 10 %ниже стехиометрического.

Таблица 1. Экспериментальные моды, зарегистрированные при возбуждении 325 нм и 532 нм, и рассчитанные KP активные моды $NaBa_{12}(BO_3)_7F_4$ в диапазоне от 300 см $^{-1}$ до 3000 см $^{-1}$

Эксперимент, 325 нм			Эксперимент, 532 нм			Расчет, см ⁻¹	
возбуждение, см ⁻¹			возбуждение, см ⁻¹				Обозначение
NBBF-1	NBBF-2	NBBF-3	NBBF-1	NBBF-2	NBBF-3	CIVI	
_	_		2606*	2605*	1	_	4v _{2*} (2612 cm ⁻¹)
_	-	-	1956*	1954*	1956*	_	$3v_{2*}$ (1959 cm ⁻¹)
_	_	_	1732*	1733*	_	-	$v_{I^*} + 2v_{2^*} (1738 \text{ cm}^{-1})$
1609*	1610*	1611*	1609*	1610*	1611*	-	
1552*	1551*	1550*	1552*	1551*	1550*	_	

1526*	1524*	1524*	1526*	1524*	1524*	_	
_	_	_	1305*	1305	1304*	_	2v ₂ * (1306 cm ⁻¹)
1265	_	1263	_	_	_	1260 (A ₁)	<i>v</i> ₃
1211	1210	1209	1211	1210	1209	1220 (A ₁)	<i>v</i> ₃
1173	1173	1173	1173	1173	1173	1181 (B ₂)	<i>V</i> ₃
_	_	_	1082*	1080*	1080*	_	$v_{I^*}+v_{2^*}(1085 \text{ cm}^{-1})$
935	935	935	935	935	935	938 (A ₁)	v_I
928	928	929	928	928	929	930 (A ₁)	v _I
897	897	897	897	897	897	897 (A ₁)	v_I
_	_	_	867*	867*	_	_	2v _{I*} (864 cm ⁻¹)
775	775	775	775	775	775	767 (B ₂)	v_2
653*	653*	_	653*	653*	653*	_	V2*
602	602	602	602	602	602	600 (B ₂)	v_4
587	587	587	587	_	587	579 (B ₂)	V ₄
575	_	575	575	575	575	571 (B ₂)	v_4
_	564	_		564			v_4
432*	432*	_	432*	432*	432*	_	V ₁ *

^{* –} Пики, отмеченные звездочкой, согласно проведенным расчетам, не могут быть описаны колебаниями в структуре NaBa₁₂(BO₃)₇F₄. Наиболее интенсивные пики в экспериментальных спектрах выделены жирным шрифтом.

Полученные результаты детально представлены в опубликованной за отчетный период работе [25].

Исследование поддержано *Российским научным фондом, грант № 24-19-00252* (Руководитель гранта д.г.-м.н, Профессор РАН Т.Б. Беккер).

4. Перечень публикаций, содержащих результаты работы

Bekker T. B., Sagatov N. E., Goryainov S. V., Mikhno A. O., Davydov A. V., Yelisseyev A. P., Romanenko A.V., Rashchenko S. V. Insights into the defect structure of NaBa₁₂(BO₃)₇F₄ (NBBF) crystals using Raman spectroscopy: numerical and experimental study. *Cryst. Growth Des.* **2025**. V. 25 (11). P. 4073–4081.

5. Эффект от использования кластера в достижении целей работы

Кластер ИВЦ НГУ является основным кластером нашей группы, без использования ресурсов кластера достижение большинства результатов было бы технически невозможным. Выражаю благодарность всему коллективу ИВЦ НГУ.

Список литературы:

- 1. Bubnova, R., Volkov, S., Albert, B., & Filatov, S. (2017). Borates—crystal structures of prospective nonlinear optical materials: high anisotropy of the thermal expansion caused by anharmonic atomic vibrations. Crystals, 7(3), 93.
- 2. Leonyuk, N. I., Maltsev, V. V., & Volkova, E. A. (2020). Crystal chemistry of high-temperature borates. Molecules, 25(10), 2450.;
- 3. Zhang, Q., An, R., Yang, Z., Long, X., Pan, S., & Yang, Y. (2024). Review on birefringence in borates based on birefringence-active functional groups and arrangements. Science China Chemistry, 67(7), 2155-2170.
- 4. X. Ding, Y. Wang, Commendable Eu²⁺-Doped oxide-matrix-based LiBa₁₂(BO₃)₇F₄ red broad emission phosphor excited by NUV light: electronic and crystal structures, luminescence properties, ACS Appl. Mater. Interfaces. 9 (2017) 23983–23994. https://doi.org/10.1021/acsami.7b06612.
- 5. W. Geng, X. Zhou, J. Ding, Y. Wang, Density-functional theory calculations, luminescence properties and fluorescence ratiometric thermo-sensitivity for a novel borate based red phosphor: NaBaSc(BO₃)₂:Ce³⁺, Mn²⁺, J. Mater. Chem. C. 7 (2019) 1982–1990. https://doi.org/10.1039/C8TC06034G.
- 6. D. Zhang, G. Li, Z. Leng, L. Li, Site occupancy and tunable photoluminescence properties of Eu²⁺-Activated Ba₃Sc(BO₃)₃ phosphors for white light emitting diodes, J. Alloys Compd. *815* (2020) 152645. https://doi.org/10.1016/j.jallcom.2019.152645.
- 7. S. Wang, Y. Xu, T. Chen, W. Jiang, J. Liu, X. Zhang, W. Jiang, L. A red phosphor LaSc₃(BO₃)₄: Eu³⁺ with zero-thermal-quenching and high quantum efficiency for LEDs, Chem. Eng. 404 (2021) 125912. https://doi.org/10.1016/j.cej.2020.125912.
- 8. E. Yildiz, E. Erdoğmuş, G. Annadurai, Photoluminescence properties of novel BaLiZn₃ (BO₃) ₃: RE (RE = Sm³⁺, Tb³⁺, Dy³⁺, and Pb²⁺) blue, green, orange-red emitting phosphors for white light emitting diodes, J. Appl. Spectrosc. 91 (2024) 852–857. https://doi.org/10.1007/s10812-024-01793-x.
- 9. Y. Chen, Y. Gao, R. Cong, T. Yang, Host-sensitized borate phosphors $ZnGdB_5O_{10}$: $Mn^{2+}/Dy^{3+}/Sm^{3+}$, Dalton Trans. 53 (2024) 17313–17323. https://doi.org/10.1039/D4DT02638A.
- 10. G. M. Cai, M. Yang, H. X. Liu, J. Y. Si, Y. Q. Zhang, Single-phased and color tunable LiSrBO₃:Dy³⁺, Tm³⁺, Eu³⁺ phosphors for white-light-emitting application, J. Lumin. 187 (2017) 211–220. https://doi.org/10.1016/j.jlumin.2017.03.017

- 11. B. Li, X. Huang, J. Lin, Single-phased white-emitting Ca₃Y(GaO)₃(BO₃)₄:Ce³⁺,Tb³⁺,Sm³⁺ phosphors with high-efficiency: Photoluminescence, energy transfer and application in near-UV-pumped white LED, J. Lumin. 204 (2018) 410–418. https://doi.org/10.1016/j.jlumin.2018.08.044.
- 12. B. Li, Q. Sun, S. Wang, H. Guo, X. Huang, Ce³⁺ and Tb³⁺ doped Ca₃Gd(AlO)₃(BO₃)₄ phosphors: synthesis, tunable photoluminescence, thermal stability, and potential application in white LEDs, RSC Adv. 8 (2018) 9879–9886. https://doi.org/10.1039/C8RA01322E.
- 13. T. B. Bekker, A. A. Ryadun, A. V. Davydov, V. P. Solntsev, V. D. Grigorieva, Luminescence properties of rare-earth-doped fluoride borate crystals, J. Alloys Compd. 900 (2022) 163343. https://doi.org/10.1016/j.jallcom.2021.16334.
- 14. T. B. Bekker, A. A. Ryadun, A. V. Davydov, S. V. Rashchenko, LiBa₁₂(BO₃)₇F₄ (LBBF) crystals doped with Eu³⁺, Tb³⁺, Ce³⁺: structure and luminescence properties, Dalton Trans. 52 (2023) 8402–8413. https://doi.org/10.1039/D3DT01279D.
- 15. Rashchenko, S. V., & Bekker, T. B. (2021). Crystal chemistry of novel "antizeolite" structures. *Journal of Structural Chemistry*, 62(12), 1935-1945.
- 16. G. Kresse, J. Furthmüller, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set, Physical review B. 54 (1996) 11169. https://doi.org/10.1103/PhysRevB.54.11169.
- 17. G. Kresse, D. Joubert, From ultrasoft pseudopotentials to the projector augmented-wave method, Phys. Rev. B. 59 (1999) 1758. https://doi.org/10.1103/PhysRevB.59.1758.
- 18. J. P. Perdew, K. Burke, M. Ernzerhof, Generalized gradient approximation made simple, Phys. Rev. Lett. 77 (1996) 3865. https://doi.org/10.1103/PhysRevLett.77.3865.
- 19. H. J. Monkhorst, J. D. Pack, Special points for Brillouin-zone integrations, Phys. Rev. B. 13 (1976) 5188. https://doi.org/10.1103/PhysRevB.13.5188.
- 20. A. Togo, I. Tanaka, First principles phonon calculations in materials science, Scr. Mater. 108 (2015) 1–5. https://doi.org/10.1016/j.scriptamat.2015.07.021.
 - 21. A. Fonari, S. Stauffer, vasp raman.py 2013. https://github.com/raman-sc.
 - 22. Q. J. Zheng, VaspVib2XSF, 2020. https://github.com/QijingZheng/VaspVib2XSF.
- 23. A. Stukowski, Visualization and analysis of atomistic simulation data with OVITO-the Open Visualization Tool, Model. Simul. Mater. Sci. Eng. 18 (2009) 015012. https://doi.org/10.1088/0965-0393/18/1/015012.
- 24. A. Stukowski, Visualization and analysis of atomistic simulation data with OVITO-the Open Visualization Tool, Model. Simul. Mater. Sci. Eng. 18 (2009) 015012. https://doi.org/10.1088/0965-0393/18/1/015012.
- 25. Bekker T. B., Sagatov N. E., Goryainov S. V., Mikhno A. O., Davydov A. V., Yelisseyev A. P., Romanenko A.V., Rashchenko S. V. Insights into the defect structure of NaBa₁₂(BO₃)₇F₄

(NBBF) crystals using Raman spectroscopy: numerical and experimental study. *Cryst. Growth Des.* **2025**. V. 25 (11). P. 4073–4081.