ОТЧЕТ О ПРОДЕЛАННОЙ РАБОТЕ С ИСПОЛЬЗОВАНИЕМ ОБОРУДОВАНИЯ ИВЦ НГУ

1. Аннотация

В последние десятилетия микрозагрязнители (такие как лекарства и средства личной гигиены (PPCPs), пестициды, соединения, нарушающие работу эндокринной системы (EDCs)) стали горячей темой в экологической химии во всем мире и привлекли большое внимание ученых-экологов из Китая и России. В настоящее время исследования таких веществ в основном сосредоточены на их поведении и трансформации в окружающей среде, оценке их воздействия и рисков, сокращении и контроле загрязнений. Фотохимические процессы важны не только для понимания трансформации большинства микрозагрязнителей в окружающей среде, но также они играют существенную роль при разработке соединений. Механизм прямого УФ-фотолиза технологий для удаления таких таких микрозагрязнителей, как антибиотики хлорамфеникол (САР) и ципрофлоксацин (СІР), был выявлен с использованием комбинации стационарного фотолиза в сочетании с ЖХ-МС высокого разрешения и квантово-химическими расчетами DFT. Для антибиотика хлорамфеникол (CAP) впервые были получены данные о короткоживущих промежуточных интермедиатах, образующихся в процессе фотолиза. Первичным фотопроцессом является разрыв С-С связи с образованием 4-nitrobenzylalcohol radical, который в обескислороженных растворах преимущественно переходит в паранитробензальдегид и продукты его вторичного фотолиза. В присутствии кислорода первичный радикал и пара-нитробензальдегид трансформируются в пара-нитрозобензойную и пара-нитробензойную кислоты в результате реакции с активными формами кислорода. Квантовый выход прямого фотолиза САР составляет ~3% и не зависит от наличия растворенного кислорода и длины волны возбуждения в диапазоне 254 – 308 нм. Для антибиотка ципрофлоксацина (CIP), находящегося в цвиттерионной и анионной формах, механизм фотодеградации был выявлено, что основным промежуточным продуктом является диссоциативное триплетное состояние, которое теряет ион фтора с образованием триплетного карбокатиона; последующая атака последнего растворителем приводит к образованию продуктов гидроксилирования как ароматического кольца, так и пиперазинильного заместителя. Соответственно, квантовый выход фотолиза обеих форм CIP не зависит от длины волны возбуждения, но зависит от концентрации растворенного кислорода. Вторичный фотолиз приводит к ряду продуктов окисления ароматической системы, а также окислению, раскрытию и полному разрушению пиперазинильного заместителя. Полученные данные важны для дальнейшего понимания путей трансформации соединений РРСР в природных и сточных водах под действием естественного и искусственного УФ излучения. Результаты квантово-химических DFT расчетов электронных спектров нейтральных и анионных форм исследуемых соединений РРСР, а также их промежуточных соединений методом B3LYP/6-311G** находятся в хорошем согласии с результатами стационарных спектров поглощения и лазерного флэш-фотолиза.

2. Тема работы

Прямая УФ-фотодеградация микрозагрязнителей хлорамфеникол (САР) и ципрофлоксацин (СІР) в водных растворах: механистическое изучение.

3. Состав коллектива

- 1. Поздняков Иван Павлович, к.х.н., старший научный сотрудник, Институт химической кинетики и горения СО РАН, Новосибирский государственный университет, руководитель
- 2. Тютерева Юлия Евгеньевна, младший научный сотрудник, Институт химической кинетики и горения СО РАН, Новосибирский государственный университет, исполнитель
- 3. Беликов Юрий Алексеевич, Институт химической кинетики и горения СО РАН, инженер; Новосибирский государственный университет, исполнитель

- 4. Федунов Роман Геннадиевич, к.ф.-м.н., старший научный сотрудник, Институт химической кинетики и горения СО РАН, Новосибирский государственный университет, исполнитель
- 5. Снытникова Ольга Александровна, к.х.н., Международный томографический центр СО РАН, исполнитель
- 6. Яншоле Вадим Владимирович, к.ф.-м.н, Новосибирский государственный университет, исполнитель

4. Информация о грантах

РНФ-Китай 21-43-00004, «Механизм и применение процессов усиленной синергетической адсорбции-окисления приоритетных микрозагрязнителей в водных системах с помощью солнечного света на основе природных фотоактивных соединений железа», ИХКиГ СО РАН, (2021 – 2023 гг.), руководитель – Поздняков Иван Павлович

5. Постановка задачи

5.1. Постановка задачи

В данной работе проводилось количественное исследование фотодеградации антибиотиков хлорамфеникол (САР) и ципрофлоксацин (СІР) с помощью как стационарного, так и лазерного импульсного фотолиза. Целью работы было выяснить механизм фотодеградации, выявить короткоживущие интермедиаты и конечные продукты. Теоретическая часть работы состояла в проведении квантово-химических расчетов спектров поглощения САР и СІР как в нейтральной, так и в ионной формах в воде, а также их продуктов и промежуточных соединений при помощи пакета программ Gaussian 16 методом DFT/B3LYP/6-311G**. Использовался апробированный в литературе метод, который показал хорошее согласие рассчитанных электронных спектров с результатами экспериментов по стационарному поглощению исследуемых антибиотиков. В данной работе моделировались вероятные интермедиаты и выполнялось сравнение их электронных спектров с результатами нестационарного флэш-фотолиза.

5.2. Современное состояние проблемы

Проблема загрязнения водной среды является одной из наиболее важных глобальных проблем последних десятилетий. Выбросы загрязнителей в результате человеческой активности негативно влияют на качество воды, что в свою очередь ведёт к многочисленным нарушениям в экосистеме, в целом. К подобным загрязнителям можно отнести тяжелые металлы и различные устойчивые органические соединения, такие как: красители, используемые в технической промышленности, гербициды, пестициды, а также фармацевтические препараты [1].

Хлорамфеникол (САР) используется как антибиотик широкого спектра действия как во врачебной, так и в ветеринарной практике [2]. Данный антибиотик является крайне токсичным, оказывая тяжелые побочные эффекты, наиболее опасным из которых является необратимая апластическая анемия [3]. Предполагается, что токсический эффект САР связан, в том числе, с его превращением под действием света в различные нитрозо-соединения [4]. В виду химической стабильности и широкого нахождения в естественных водах [5], данное соединение может также выступать в качестве модельного загрязнителя для разработки подходов к очистке воды от устойчивых загрязнителей, в том числе и фотохимических [6].

Исследование фотолиза САР ведется с конца прошлого столетия, однако механизм его УФ фотодеградации основан исключительно на анализе фотопродуктов. В ранних работах, посвященных фотодеградации САР в концентрации, типичной для глазных капель (0.25% или 8×10⁻³M) под действием естественного и искусственного света [7] показано, что основным продуктом является пара-

нитробензальдегид (pNB), переходящий через фотоизомеризацию в пара-нитрозобензойнуюкислоту (pNOBA). Квантовый выход фотолиза САР невелик и по данным [8] составляет 2.6% под действием света с длинной волны 254 нм. Предполагается, что фотолиз происходит через разрыв β-С-С связи относительно ароматической системы, с образованием 4-nitrobenzylalcoholradical. Также обнаружены 4,4-азоксибензойная кислота, образующаяся предположительно в результате реакции pNOBA и первичного радикала, а также пара-нитробензойная кислота (pNBA), механизм образования которой не объясняется [7].

Результаты исследований последних лет расходятся с предшествующими данными и показывают большее разнообразие в находимых продуктах фотолиза, механизм образования которых, тем не менее, оставляет вопросы. В работе [9] в ходе прямого фотолиза ([CAP] = 3×10^{-6} М при возбуждении светом 350 - 400 нм) обнаружены только продукты окисления и дегидрирования боковой цепи, а не продукты ее разрыва, как было установлено в ранних работах. В работе [10] в ходе фотолиза с использованием фотодиодов ([CAP] = $1,5 \times 10^{-5}$ М при возбуждении на 280 нм), кроме найденных ранее пара-нитробензальдегида и соответствующей кислоты, найдены дополнительно продукты разрыва С-N связи. Можно было предположить, что разница в составе фотопродуктов объясняется различием в источниках излучения и начальной концентрации САР в указанных выше работах.

С другой стороны, ципрофлоксацин (СІР), типичный фторхинолоновый антибиотик, широко применяемый не только в сельском хозяйстве, но и в медицине и ветеринарии [11, 12]. Из-за относительно низкой эффективности удаления, стоки городских очистных сооружений являются одними из основных источников попадания антибиотиков в различные среды [13]. Сообщалось, что СІР обнаруживается в водных экосистемах, включая сточные воды, реки, подземные воды, а также питьевую воду [14]. Благодаря стабильной химической структуре, СІР плохо поддается биологическому разложению [15]. Попадание антибиотиков в окружающую среду (например, в почву и водные экосистемы) может привести к эволюции новых генов и бактерий, устойчивых к антибиотикам, создавая огромную проблему для общественного здравоохранения и экосистемы [16-19].

Первичная фотохимия СІР, особенно анионной формы, исследована мало, предполагаемые механизмы фотодеградации предлагаются преимущественно по анализу продуктов фотолиза. Квантовый выход фотодеградации СІР известен только для нейтральной формы СІР, он составляет 0.07 [20] и 0.044 [21] при облучении на 254 нм в атмосфере аргона и при нормальном содержании кислорода. Влияние кислорода на эффективность фотодеградации нейтральной формы СІР и регистрация Т-Т поглощения для этой формы в импульсных экспериментах [20] позволили сделать вывод, что основным промежуточным состоянием, из которого далее образуются продукты, является триплетное состояние.

В работах, где указаны продукты фотодеградации СІР, [21-26] предполагается замещение фтора ОН-группой, декарбоксилирование, встраивание кислорода в кольцо-заместитель, а также раскрытие как пиперазинильного кольца заместителя, так и ароматического кольца. Следует отметить, что дефторирование является основной фотореакцией, происходящей в нейтральных условиях для многих исследованных фторхинолонов. При этом СІР для нет согласия по части вклада декарбоксилирование является незначительным процессом (<5%). В работе [20] утверждается, что декарбоксилирование является незначительным процессом (<5%). В работе [23] не наблюдается продуктов потери фтора, но наблюдается образование азотистых соединений, вплоть до аммиака, свидетельствующих о разрушении бокового пиперазинового цикла.

Для устранения разрыва между результатами старых и новых исследований, нами была поставлена задача по установлению механизма фотолиза САР не только по составу конечных продуктов фотодеградации, но и с помощью прямой регистрации короткоживущих интермедиатов и квантовохимических расчетов. Особое внимание было обращено влиянию таких важных параметров как влияние длины волны возбуждения, концентрации САР и растворенного кислорода на квантовый выход фотолиза и состав его фотопродуктов. Также была поставлена задача квантово-химического и

экспериментального исследования фотодеградации как нейтральной, так и анионной форм CIP в водных растворах, определению квантового выхода фотолиза, природы первичных интермедиатов и конечных продуктов, подтверждение предполагаемых механизмов квантово-химическими расчетами DFT. Проведенные исследования позволили предложить детальные механизмы фотолиза CAP и CIP от формирования ключевых короткоживущих частиц до образования конечных фотопродуктов. Полученная информация позволит улучшить понимание роли фотохимических процессов в трансформации исследуемых антибиотиков в водной среде, а также открывает дорогу к разработке фотохимических методов водоочистки от подобного рода соединений.

- Saravanan, A., Kumar, P.S., Vo, D.V.N., Yaashikaa, P.R., Karishma, S., Jeevanantham, S., Gayathri, B., Bharathi, V.D., 2021. Photocatalysis for removal of environmental pollutants and fuel production: a review. Environ Chem Lett. https://doi.org/10.1007/s10311-020-01077-8
- 2. Marín-García, M., de Luca, M., Ragno, G., Tauler, R., 2022. Coupling of spectrometric, chromatographic, and chemometric analysis in the investigation of the photodegradation of sulfamethoxazole. Talanta 239. https://doi.org/10.1016/j.talanta.2021.122953
- 3. Malkin, D., Koren, G., Saunders, E.F., 1990. Drug-induced aplastic anemia: Pathogenesis and clinical aspects. J Pediatr Hematol Oncol 12. https://doi.org/10.1097/00043426-199024000-00004
- Yunis, A.A., Miller, A.M., Salem, Z., Arimura, G.K., 1980. Chloramphenicol toxicity: Pathogenetic mechanisms and the role of the p-NO2 in aplastic anemia. Clin Toxicol 17. https://doi.org/10.3109/15563658008989985
- Nguyen, L.M., Nguyen, N.T.T., Nguyen, T.T.T., Nguyen, T.T., Nguyen, D.T.C., Tran, T. van, 2022. Occurrence, toxicity and adsorptive removal of the chloramphenicol antibiotic in water: a review. Environ Chem Lett. https://doi.org/10.1007/s10311-022-01416-x
- Cheng, F., Zhou, P., Liu, Y., Huo, X., Zhang, J., Yuan, Y., Zhang, H., Lai, B., Zhang, Y., 2021. Graphene oxide mediated Fe(III) reduction for enhancing Fe(III)/H₂O₂ Fenton and photo-Fenton oxidation toward chloramphenicol degradation. Science of the Total Environment 797. https://doi.org/10.1016/j.scitotenv.2021.149097
- de Vries, H., van Henegouwen, G.M.J.B., Huf, F.A., 1984. Photochemical decomposition of chloramphenicol in a 0.25% eyedrop and in a therapeutic intraocular concentration. Int J Pharm 20. https://doi.org/10.1016/0378-5173(84)90173-X
- Chowdhury, P., Sarathy, S.R., Das, S., Li, J., Ray, A.K., Ray, M.B., 2020. Direct UV photolysis of pharmaceutical compounds: Determination of pH-dependent quantum yield and full-scale performance. Chemical Engineering Journal 380. https://doi.org/10.1016/j.cej.2019.122460
- Marson, E.O., Paniagua, C.E.S., Costa-Serge, N.M., Sousa, R.M.F., Silva, G.D., Becker, R.W., Sirtori, C., Starling, M.C.V.M., Carvalho, S.R., Trovó, A.G., 2021. Chemical and toxicological evaluation along with unprecedented transformation products during photolysis and heterogeneous photocatalysis of chloramphenicol in different aqueous matrices. Environmental Science and Pollution Research 28. https://doi.org/10.1007/s11356-020-09756-3
- Qu, X., Wu, H., Zhang, T., Liu, Q., Wang, M., Yateh, M., Tang, Y., 2021. Degradation of chloramphenicol using UV-led based advanced oxidation processes: Kinetics, mechanisms, and enhanced formation of disinfection by-products. Water (Switzerland) 13. https://doi.org/10.3390/w13213035
- Le, T.-H., Ng, C., Tran, N.H., Chen, H., Gin, K.Y.-H., 2018. Removal of antibiotic residues, antibiotic resistant bacteria and antibiotic resistance genes in municipal wastewater by membrane bioreactor systems. Water Res. 145, 498–508. https://doi.org/10.1016/j.watres.2018.08.060
- Chen, M., Xie, S., Wei, J., Song, X., Ding, Z., Li, X., 2018. Antibacterial micelles with vancomycinmediated targeting and pH/lipase-triggered release of antibiotics. ACS Appl. Mater. Interfaces 10, 36814– 36823. https://doi.org/10.1021/acsami.8b16092

- Michael, I., Rizzo, L., McArdell, C.S., Manaia, C.M., Merlin, C., Schwartz, T., Dagot, C., Fatta-Kassinos, D., 2013. Urban wastewater treatment plants as hotspots for the release of antibiotics in the environment: a review. Water Res. 47 (3), 957–995. https://doi.org/10.1016/j.watres.2012.11.027
- Jia, Y., Khanal, S.K., Shu, H., Zhang, H., Chen, G.-H., Lu, H., 2018. Ciprofloxacin degradation in anaerobic sulfate-reducing bacteria (SRB) sludge system: mechanism and pathways. Water Res. 136, 64– 74. https://doi.org/10.1016/j.watres.2018.02.057
- 15. Wang, F., Feng, Y., Chen, P., Wang, Y., Su, Y., Zhang, Q., Zeng, Y., Xie, Z., Liu, H., Liu, Y., Lv, W., Liu, G., 2018. Photocatalytic degradation of fluoroquinolone antibiotics using ordered mesoporous g-C₃N₄ under simulated sunlight irradiation: kinetics, mechanism, and antibacterial activity elimination. Appl. Catal. B Environ. 227, 114–122. https://doi.org/10.1016/j.apcatb.2018.01.024
- Andam, C.P., Fournier, G.P., Gogarten, J.P., 2011. Multilevel populations and the evolution of antibiotic resistance through horizontal gene transfer. FEMS Microbiol. Rev. 35 (5), 756–767. https://doi.org/10.1111/j.1574-6976.2011.00274.x
- Davies, J., Davies, D., 2010. Origins and evolution of antibiotic resistance. Microbiol. Mol. Biol. Rev. 74 (3), 417–433. https://doi.org/10.1128/MMBR.00016-10
- 18. Jechalke, S., Heuer, H., Siemens, J., Amelung, W., Smalla, K., 2014. Fate and effects of veterinary antibiotics in soil. Trends Microbiol. 22 (9), 536–545. https://doi.org/10.1016/j.tim.2014.05.005
- 19. Marti, E., Variatza, E., Balcazar, J.L., 2014. The role of aquatic ecosystems as reservoirs of antibiotic resistance. Trends Microbiol. 22 (1), 36–41. https://doi.org/10.1016/j.tim.2013.11.001
- Mella, M., Fasani, E., Albini, A., 2001. Photochemistry of 1-Cyclopropyl-6-fluoro-1,4-dihydro-4-oxo-7-(piperazin-1-yl)quinoline-3-carboxylic acid (=Ciprofloxacin) in aqueous solutions. Helv. Chim. Acta 84, 2508. https://doi.org/10.1002/1522-2675(20010919)84:9<2508::AID-HLCA2508>3.0.CO;2-Y
- Guo, H.-G., Gao, N.-Y., Chu, W.-H., Li, L., Zhang, Y.-J., Gu, J.-Sh, Gu, Y.-L., 2013. Photochemical degradation of ciprofloxacin in UV and UV/H2O2 process: kinetics, parameters, and products. Environ. Sci. Pollut. Res. 20, 3202–3213. https://doi.org/10.1007/s11356-012-1229-x
- Bai, X., Li, Y., Xie, L., Liu, X., Zhan, S., Hu, W., 2019. A novel Fe-free photo-electro-fenton-like system for enhanced ciprofloxacin destruction: bifunctional Z-scheme WO₃/g-C₃N₄. Environ. Sci.: Nano 1–13. https://doi.org/10.1039/C9EN00528E
- Paul, T., Dodd, M.C., Strathmann, T.J., 2010. Photolytic and photocatalytic decomposition of aqueous ciprofloxacin: transformation products and residual antibacterial activity. Water Res. 44, 3121–3132. https://doi.org/10.1016/j.watres.2010.03.002
- 24. Vasconcelos, T.G., Henriques, D.M., Konig, A., Martins, A.F., Kümmerer, K., 2009. Photo-degradation of the antimicrobial ciprofloxacin at high pH: identification and biodegradability assessment of the primary by-products. Chemosphere 76, 487–493. https://doi.org/10.1016/j.chemosphere.2009.03.022
- An, T., Yang, H., Li, G., Song, W., Cooper, W.J., Nie, X., 2010. Kinetics and mechanism of advanced oxidation processes (AOPs) in degradation of ciprofloxacin in water. Appl. Catal. B Environ. 94, 288– 294. https://doi.org/10.1016/j.apcatb.2009.12.002
- De Witte, B., Dewulf, J., Demeestere, K., Langenhove, H.V., 2009. Ozonation and advanced oxidation by the peroxone process of ciprofloxacin in water. J. Hazard Mater. 161, 701–708. https://doi.org/10.1016/j.jhazmat.2008.04.021

5.3. Подробное описание работы, включая используемые алгоритмы

Квантово-химические расчеты выполнены с использованием пакета программ Gaussian 16 [1]. Программное обеспечение ChemCraft (https://www.chemcraftprog.com) использовалось для визуализации расчетов. Стационарные состояния нейтральной и анионной форм антибиотиков рассчитывали методом DFT с использованием функционала B3LYP [2] вместе со стандартным базисным набором 6-311G**. Оптимизация геометрии промежуточных катион радикалов следовала неограниченному процессу Кона-Шема DFT. Одноточечные расчеты TD-DFT [3] были выполнены для получения энергии вертикального электронного перехода рассматриваемых соединений. СРСМ [4]

был включен во все расчеты для учета неявной модели водного растворителя. Сетка DFT, критерий сходимости для оптимизации геометрии были установлены по умолчанию. В расчетах не применялись ограничения по симметрии. Гессианы не имели отрицательных частот.

- Frisch, M.J., Trucks, G.W., Schlegel, H.B., Scuseria, G.E., Robb, M.A., Cheeseman, J.R., Scalmani, G., Barone, V., Petersson, G.A., Nakatsuji, H., Li, X., Caricato, M., Marenich, A.V., Bloino, J., Janesko, B.G., Gomperts, R., Mennucci, B., Hratchian, H. P., Ortiz, J.V., Izmaylov, A.F., Sonnenberg, J.L., Williams-Young, D., Ding, F., Lipparini, F., Egidi, F., Goings, J., Peng, B., Petrone, A., Henderson, T., Ranasinghe, D., Zakrzewski, V.G., Gao, J., Rega, N., Zheng, G., Liang, W., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Vreven, T., Throssell, K., Montgomery Jr., J.A., Peralta, J.E., Ogliaro, F., Bearpark, M.J., Heyd, J.J., Brothers, E.N., Kudin, K.N., Staroverov, V.N., Keith, T.A., Kobayashi, R., Normand, J., Raghavachari, K., Rendell, A.P., Burant, J. C., Iyengar, S.S., Tomasi, J., Cossi, M., Millam, J.M., Klene, M., Adamo, C., Cammi, R., Ochterski, J.W., Martin, R.L., Morokuma, K., Farkas, O., Foresman, J.B., Fox, D.J., 2019. Gaussian 16, Revision C.01. Gaussian, Inc., Wallingford CT.
- Becke, A., 1993. Density-functional thermochemistry. III. The role of exact exchange. J. Chem. Phys. 98, 5648–5652. https://doi.org/10.1063/1.464913.
- Gross, E.K.U., Dobson, J.F., Petersilka, M., 1996. Density functional theory of timedependent phenomena. Top. Curr. Chem. 181, 81–172. https://doi.org/10.1007/BFb0016643.
- 4. Barone, V., Cossi, M., 1998. Quantum calculation of molecular energies and energy gradients in solution by a conductor solvent model. J. Phys. Chem. A 102, 1995–2001. https://doi.org/10.1021/jp9716997.

5.4. Полученные результаты

5.4.1. Результаты квантовохимических расчетов для САР

В данном теоретическом исследовании мы решили уделить больше внимания изучению спектральных характеристик исследуемых соединений, при этом электронная и геометрическая структуры исходного соединения САР и промежуточного радикала pNB представлены без анализа ввиду безусловной воспроизводимости результатов расчетов. Для выявления наилучшего метода мы провели серию расчетов спектров САР и pNB и провели сравнение с экспериментальными данными рис. А1 и А2 соответственно. Из сравнения всех результатов очевидно, что метод B3LYP/6-311G(d,p) (в другом обозначении B3LYP/6-311**) показал наилучшее согласие экспериментальных и расчетных данных как для САР, так и для pNB.

Рис. А1. Рассчитанные различными методами спектры САР (точки с вертикальными линиями), черные кривые – экспериментальные спектры, цветные кривые – гауссовы огибающие.

Рис. А2. Рассчитанные различными методами спектры pNB (точки с вертикальными линиями), черные кривые – спектры импульсного фотолиза, сканированные на времени 45 мкс, цветные кривые – гауссовы огибающие.

На рис. АЗ и А4 показаны оптимизированные методом B3LYP/6-311G**/PCM(вода) структуры с указанием зарядов на атомах и некоторых геометрических параметров. Близкое совпадение рассчитанных спектров поглощения для CAP (рис. А1) в парах базисных наборов (6-311G++(d,p), augcc-pVDZ) и (6-311G(d,p), def2-TZVP) дает дополнительное подтверждение того, что результаты легко воспроизводимы. В целом полученные результаты не противоречат известным фактам, согласно которым метод B3LYP/6-311** наилучшим образом воспроизводит электронные спектры органических соединений. При этом мы также убедились, что спектры радикалов органических соединений хорошо воспроизводятся этим методом, хотя следует отметить расхождение между рассчитанными силами осцилляторов (f_{osc}) и интенсивностями поглощения (ΔA) для двух наблюдаемых пиков (рис. А2). Поскольку все методы качественно показали совпадение спектров импульсного фотолиза и результатов расчета (рис. А2), мы можем с высокой степенью достоверности идентифицировать промежуточный радикал pNB (рис. А4), появляющийся после фотовозбуждения.

Спектр долгоживущего (>300 мкс) поглощения с максимумами при 360 и 560 нм принадлежит соединению (рис. A4), образующемуся в монофотонном процессе. На основании литературных данных [1, 2] этот интермедиат можно отнести к замещенному нитробензильному радикалу. Квантовохимические расчеты спектра поглощения радикала pNB подтверждают это предположение (рис. A2). Из сравнения всех результатов очевидно, что метод B3LYP/6-311** показал наилучшее согласие экспериментальных и расчетных данных как для CAP, так и для pNB (рис. A1 и A2). Таким образом, одноквантовое возбуждение САР приводит к гомолитическому разрыву связи β-С-С относительно ароматической системы с образованием радикала pNB и его партнера — алифатического радикала R•.

5.4.2. Результаты квантовохимических расчетов для СІР

В зависимости от значения pH среды CIP может находиться в катионной (CCIP), цвиттерионной (ZCIP) и анионной (ACIP) формах. Также возможен нейтральный CIP, что схематически показано на рисунке B1. Мы выполнили расчеты B3LYP/6-311G(d,p)/PCM(вода) для всех четырех структур и расчеты одноточечных спектров UV-Vis на основе оптимальной геометрии в синглетном состоянии (таблица B1, строки 1-4). Таблица B1 содержит результаты расчетов для полных энергий, длин связей, углов связей и двугранных углов, зарядов на атомах, наиболее важных для рассматриваемого возможного фотолиза СIP. Мы полагаем, что фотолиз CIP включает его триплетные состояния, а также триплетные состояния CIP с отделенным анионом фтора и CIP с присоединенной гидроксигруппой (таблица B1, строки 5-17). При этом группа CO₂ может быть как параллельна плоскости хинолина (двугранный угол $\mathfrak{D}_{2-3-20-21} \sim 0,0$), так и перпендикулярна ($\mathfrak{D}_{2-3-20-21} \sim 90,0$). Таблица B1 разделена на разделы таким образом, чтобы результаты расчетов различных форм CIP соответствовали результатам расчетов их спектров, представленных на рисунках B2-B4.

Рис. В1. Структура соединения 1-cyclopropyl-6-fluoro-4-охо-7-(piperazin-1-yl)-1,4dihydroquinoline-3-carboxylic acid (CIP). Цифрами обозначены атомы, представляющие наибольший интерес для анализа результатов.

Таблица В1. Геометрическое и электронное строение СІР и его производных рассчитанные методом B3LYP/6-311**/РСМ(вода). Полный заряд, Q; мультиплетность, M; длины связей, R_{i-j}; валентные углы, Đ_{i-j-k}; торсионные углы, Đ_{i-j-k-l}; малликеновские заряды, q_i; полная энергия, E₀; дипольный момент, D. Формы СІР следующие: NCIP (нейтральная), ZCIP (цвитерионная), ACIP (анионная), CCIP (катионная).

			_				
Ν	$R_{1-2}, R_{2-3}, R_{3-4}, R_{3-20},$	$\mathbf{D}_{1-2-3}, \mathbf{D}_{2-3-4}, \mathbf{D}_{2-3-20}, \mathbf{D}_{3-1}$	$\mathbf{D}_{8-7-14-13}$,	$q_1, q_3, q_4, q_6,$			
	$R_{4-23}, R_{20-21}, R_{20-22}, R_{5-6}, R_{6-1}$	$_{4-23}, \mathbf{D}_{3-20-21}, \mathbf{D}_{3-20-22},$	Ð ₇₋₁₄₋₁₃₋₁₂ ,	$q_{11}, q_{14}, q_{20}, q_{21},$			
	7, \mathbf{R}_{6-24} , \mathbf{R}_{1-17} , \mathbf{R}_{7-14} , \mathbf{R}_{11-12} ,	$\mathbf{D}_{5-6-7}, \mathbf{D}_{6-7-8}, \mathbf{D}_{5-6-24},$	Ð ₁₄₋₁₃₋₁₂₋₁₁ ,	q_{22}, q_{23}, q_{24}			
	$R_{12-13}, R_{13-14},$	$\mathbf{D}_{9-1-17}, \mathbf{D}_{8-7-14}, \mathbf{D}_{12-11-16}$	Đ ₉₋₁₋₁₇₋₁₈				
	Синглеты, Э ₂₋₃₋₂₀₋₂₁ ~ 0.0 (Рис. В2)						
1	¹ NCIP ⁰ (Q = 0, M = 1, E ₀ = -31258.01 \Im B, D = 15.4 μ B, R _{H22-023} = 1.618)						
	1.350, 1.371, 1.437, 1.488,	125.4, 119.8, 118.1,	-13.7,	-0.49, -0.49, 0.46, 0.28,			
	1.257, 1.216, 1.336, 1.362,	122.9, 123.5, 115.0,	-161.1,	-0.43, -0.47, 0.45, -0.40,			
	1.419, 1.356, 1.472, 1.388,	122.4, 116.4, 118.5,	-57.4,	-0.35, -0.47, -0.24			
	1.463, 1.527, 1.467	126.8, 122.8, 110.3	-39.2				
2	¹ ZCIP ⁰ (Q = 0, M = 1, E ₀ = -31257.01 эВ, D = 57.2 дБ)						
	1.367, 1.368, 1.451, 1.546,	127.7, 118.3, 115.8,	-16.7,	-0.48, -0.38, 0.34, 0.28,			
	1.238, 1.260, 1.250, 1.364,	126.5, 115.5, 117.6,	-159.5,	-0.34, -0.47, 0.28, -0.53,			
	1.411, 1.361, 1.466, 1.409,	122.0, 117.2, 119.3,	-56.5,	-0.51, -0.41, -0.25			
	1.509, 1.523, 1.459	127.2, 123.3, 112.0	-40.8				
3	¹ ACIP ⁻¹ (Q = -1, M = 1, E ₀ = -31244.56 \Im B)						
	1.366, 1.366, 1.452, 1.545,	127.6, 118.3, 115.8,	-14.2,	-0.48, -0.38, 0.33, 0.27,			
	1.240, 1.262, 1.250, 1.364,	126.4, 115.5, 117.7,	-164.5,	-0.43, -0.47, 0.28, -0.53,			
	1.415, 1.362, 1.465, 1.400,	122.3, 116.4, 118.8,	-57.8,	-0.51, -0.42, -0.25			
	1.464, 1.527, 1.466	127.1, 120.3, 110.3	-41.2				

4	¹ CCIP ¹ (Q = 1, M = 1, E ₀ = -31270.40 \Im B, R _{H22-023} = 1.628)							
	1.350, 1.371, 1.436, 1.489,	125.5, 119.8, 118.1,	-16.1,	-0.49, -0.49, 0.46, 0.29,				
	1.255, 1.215, 1.336, 1.363,	123.1, 123.5, 115.1,	-158.3,	-0.34, -0.48, 0.45, -0.39,				
	1.414, 1.354, 1.473, 1.401,	122.1, 117.2, 119.1,	-56.5,	-0.35, -0.47, -0.24				
	1.508, 1.523, 1.461	126.9. 123.1. 111.9	-37.8					
	Триплеты. Э 2-3-20-21 ~ 0.0 (Рис. ВЗ.1)							
5	$^{3}NCIP^{0} (O = 0, N)$	$I = 3, E_0 = -31255.25 \text{ pB}, D$	= 23.4 лБ. R	$H_{22,023} = 1.534$				
-	1 366 1 365 1 443 1 488	1241 1202 1185	-47.4	-0.50 -0.47 -0.39 -0.27				
	1 284 1 219 1 332 1 371	122 3 123 8 114 5	-1167	-0.38 -0.43 0.43 -0.41				
	1 400 1 358 1 466 1 381	122.5, 125.6, 111.5, 122.5, 117.2, 118.4	-57.3					
	1 457 1 541 1 467	122.3, 117.2, 110.4, 126.4, 117.7, 111.8	-35.5	0.57, 0.52, 0.24				
6	$^{3}NCIP^{1}$ (p. otevtetp	$(0 - 1 M - 3 F_{0} - 1 M - 3$	-33.3 -28532.00 pR	$P_{\rm res} = 1.656$				
U	1 350 1 371 1 434 1 491	125.8 119.8 117.9	-12 3	-0.50 -0.49 -0.47 -0.03				
	1.550, 1.571, 1.454, 1.491, 1.250, 1.214, 1.335, 1.348	123.0, 119.0, 117.9,	-102.5	-0.31 -0.37 0.46 -0.39				
	1.250, 1.214, 1.555, 1.540, 1.400 1.475, 1.383	125.7, 125.2, 115.1, 125.4, 116.3	53.0	-0.51, -0.57, 0.40, -0.55, 0.34, 0.45				
	1.400, - , 1.475, 1.505, 1.400, - , 1.475, 1.505, - , 1.400, - , 1.400, - , 1.505, - ,	125.4, 110.5, -	-33.9,	-0.34, -0.43, -				
7	$\frac{3NCIP^{0}(OH)(O-0)}{3NCIP^{0}(OH)(O-0)}$	M = 3 E = 30601 80 pB	$D = 22.0 \pi E$	P - 1537				
	1 371 1 364 1 445 1 485	124 4 120 0 118 5	, D — 22.9 дВ 34 8	$(0.51 \ 0.47 \ 0.37 \ 0.22)$				
	1.371, 1.304, 1.445, 1.465, 1.202	124.4, 120.0, 110.5, 122.1, 124.0, 114.6	-34.0,	-0.31, -0.47, 0.37, 0.22, 0.43, 0.43, 0.42				
	1.207, 1.220, 1.333, 1.372, 1.410, 1.250, 1.462, 1.270	122.1, 124.0, 114.0, 120.2, 118.0, 121.4	-127.1,	-0.43, -0.40, 0.43, -0.42, 0.28, 0.52, 0.26				
	1.419, 1.530, 1.405, 1.579,	120.2, 110.0, 121.4, 126.0, 119.7, 111.2	-57.0,	-0.38, -0.32, -0.30				
	1.400, 1.338, 1.407	120.0, 118.7, 111.5	-55.9					
•	³ 7CID ⁰	иплеты, $D_{2-3-20-21} \sim 0.0$ (P O = 0 M = 2 E = 21254	<u>ис. вз.2)</u> 41 рр. р. – 47	() - F)				
ð	ZCIP ($Q = 0, M = 3, E_0 = -31254.$	41.9B, D = 47					
	1.367, 1.301, 1.416, 1.491, 1.212, 1.241, 1.292, 1.292	122.0, 121.0, 122.0,	-23.2,	-0.31, -0.40, 0.31, 0.28, 0.26, 0.46				
	1.313, 1.241, 1.288, 1.382,	119.8, 122.4, 115.7,	-102.3,	-0.34, -0.40, 0.30, -0.40, 0.26, 0.26				
	1.387, 1.305, 1.459, 1.424,	122.8, 117.1, 118.3,	-56.9,	-0.36, -0.35, -0.26				
	1.510, 1.522, 1.458	126.3, 123.1, 112.3	-30.3					
9		\mathbf{T} сутствии F) ($\mathbf{Q} = \mathbf{I}, \mathbf{M} = \mathbf{I}$	$= 3, E_0 = -285$	52.13 3B)				
	1.353, 1.365, 1.416, 1.484,	124.2, 120.7, 122.7,	10.9,	-0.49, -0.45, 0.44, -0.07,				
	1.202, 1.232, 1.299, 1.340,	120.5, 125.9, 115.7,	-152.1,	-0.34, -0.50, 0.41, -0.41, 0.27, 0.21				
	1.405, -, 1.474, 1.580,	120.3, 115.2, -,	-55.9,	-0.27, -0.31, -				
	1.308, 1.323, 1.400	120.9, 124.3, 111.0	-39.3					
10	<u> </u>	иплеты, $D_{2-3-20-21} \sim 0.0$ (P) CID ⁻¹ (O = 1 M = 2 E =	<u>ис. вз.з)</u> 21241 00 рр)	<u> </u>				
10		$CIF (Q = -1, M = 3, E_0 = 1)$	-31241.90 3D)					
	1.395, 1.304, 1.415, 1.492, 1.215, 1.242, 1.282	122.3, 121.2, 122.7, 120.2, 122.4, 113.8	-19.0,	-0.51, -0.40, 0.50, 0.27, 0.43, 0.46, 0.36, 0.47				
	1.313, 1.242, 1.200, 1.303, 1.308, 1.309,	120.2, 122.4, 115.0, 122.0, 116.4, 117.8	-100.0,	-0.43, -0.40, 0.30, -0.47, 0.36, 0.35, 0.27				
	1.365, 1.308, 1.437, 1.410,	122.9, 110.4, 117.0, 126.4, 120.7, 110.5	-38.2,	-0.30, -0.33, -0.27				
11	$^{3}\Lambda CIP^{0}$ (P. OTEVICI	$\frac{120.4}{120.7}, \frac{120.7}{110.3}$	-+2.7 28518 70 p	 В D – 194 лБ)				
11	1 353 1 365 1 417 1 484	124 2 120 7 122 8	<u> </u>	-0.49 - 0.45 - 0.43 - 0.08				
	1.353, 1.303, 1.417, 1.404, 1.264, 1.233, 1.208, 1.346	124.2, 120.7, 122.0,	-154.6	-0.43 -0.50 0.41 -0.42				
	1.204, 1.235, 1.276, 1.346, 1.408 1.474, 1.366	126.3, 125.8, 115.7,	-134.0, 54.4	0.43, -0.50, 0.41, -0.42, 0.28, 0.32				
	1.400, - , 1.474, 1.500, 1.462, 1.528, 1.466	120.3, 114.0, -, 126.0, 124.4, 100.0	-34.4,	-0.28, -0.32, -				
	Tn		-40.4					
12	³ 7CIP ⁰	аплеты, $D_{2-3-20-21} \sim 90.0$ (г О – О М – 3 Е – 31254	$\frac{MC. D4.1}{37 \text{ p} R D = 52}$	21 TE)				
14		$Q = 0, M = 3, E_0 = -31234.$	<u>-23 5</u>	<u>агда)</u>				
	1.309, 1.309, 1.430, 1.300, 1.281, 1.250, 1.247, 1.387	121.9, 115.0, 116.5	-161.6	-0.34 -0.46 0.24 -0.47				
	1.201, 1.200, 1.247, 1.307, 1.385, 1.361, 1.454, 1.400	121.9, 115.0, 110.3, 121.9, 116.6, 119.1	-101.0,	0.37, -0.40, 0.24, -0.47,				
	1.505, 1.501, 1.454, 1.422, 1 511 1 522 1 458	122.9, 110.0, 110.1, 126.1, 126.1, 122.1, 112.2	-30.7,	-0.47, -0.44, -0.23				
13	$^{1.311, 1.322, 1.430}$	$\frac{120.1}{120.1}, \frac{120.1}{120.1}, \frac{112.3}{112.0}$	- 3 F 7852	1 32 00 pB)				
13		1250 1200 1200	– J, E ₀ – -2053 11 5	-0.46 -0.26 -0.40 -0.06				
	1.340, 1.301, 1.400, 1.303, 1.222,	123.0, 120.0,	11.3,	-0.40, -0.20, 0.40, -0.00, 0.31, 0.50, 0.20, 0.41				
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	122.3, 124.3, 100.7, 126.3, 114.9	-131.9, 54.0	-0.34, -0.30, 0.29, -0.41, 0.35, 0.26				
	1.370, - , 1.470, 1.379, 1.508, 1.527, 1.460	120.3, 114.0, -, 126 7 124 2 111 6	-34.0,	-0.55, -0.50, -				
1/	^{1.300} , 1.324, 1.400 ³ 7CID ⁰ (AII	[120.7, 124.2, 111.0]	-+0.0 00 81 - P P -	52 2 π Γ)				
1 1 1		uy vy – v, wi – J, Ľ₀ – "JVV	\mathbf{D}	<i>јење</i> д и ј				

	1 206 1 280 1 442 1 512	122.2 120.8 110.1	22.0	0.45 0.16 0.24 0.21				
	1.390, 1.300, 1.442, 1.313,	122.2, 120.8, 119.1,	-25.8,	-0.43, -0.10, 0.24, 0.21,				
	1.282, 1.249, 1.250, 1.401,	121.8, 116.0, 115.5,	-162.7,	-0.34, -0.46, 0.23, -0.49,				
	1.397, 1.364, 1.454, 1.426,	120.4, 118.0, 121.4,	-56.3,	-0.49, -0.44, -0.38				
	1.511, 1.523, 1.457	126.2, 122.7, 112. 1	-44.8					
	Триплеты, Đ ₂₋₃₋₂₀₋₂₁ ~ 90.0 (Рис. В4.2)							
15	${}^{3}\text{ACIP}^{-1}$ (Q = -1, M = 3, E ₀ = -31241.88 eV)							
	1.393, 1.394, 1.432, 1.508,	121.9, 121.1, 118.5,	-18.7,	-0.45, -0.15, 0.24, 0.28,				
	1.283, 1.248, 1.250, 1.389,	122.2, 116.2, 115.3,	-166.3,	-0.43, -0.46, 0.23, -0.48,				
	1.388, 1.363, 1.454, 1.413,	123.0, 116.1, 117.7,	-58.1,	-0.48, -0.44, -0.26				
	1 464 1 527 1 464	126.2 123.1 110.5	-45.6					
	11101, 11027, 11101	12012, 12511, 11015						
16	³ ACIP ⁰ (в отсутст	твии F) (Q = 0, M = 3, E ₀	= -28518.79 э	В , D = 19.4 дБ)				
16	³ ACIP ⁰ (в отсутст 1.347, 1.381, 1.462, 1.502,	твии F) ($\mathbf{Q} = 0, \mathbf{M} = 3, \mathbf{E}_0$ 125.0, 120.0, 120.0,	= -28518.79) 9.5,	B, D = 19.4 д Б) -0.46, -0.25, 0.39, -0.08,				
16	³ АСІР ⁰ (в отсутст 1.347, 1.381, 1.462, 1.502, 1.235, 1.227, 1.266, 1.349,	ТВИИ F') ($\mathbf{Q} = 0, \mathbf{M} = 3, \mathbf{E}_{0}$ 125.0, 120.0, 120.0, 122.2, 123.7, 107.7,	= -28518.79 3 9.5, -152.1,	B, D = 19.4 дБ) -0.46, -0.25, 0.39, -0.08, -0.43, -0.50, 0.28, -0.42,				
16	³ ACIР ⁰ (в отсутст 1.347, 1.381, 1.462, 1.502, 1.235, 1.227, 1.266, 1.349, 1.404, - , 1.469, 1.363,	TERM F) $(\mathbf{Q} = 0, \mathbf{M} = 3, \mathbf{E}_{0})$ TERM F) $(\mathbf{Q} = 0, \mathbf{M} = 3, \mathbf{E}_{0})$ 125.0 , 120.0, 120.0, 122.2 , 123.7, 107.7, 126.3 , 114.3, - ,	= -28518.79 3 9.5, -152.1, -54.5,	B , D = 19.4 дБ) -0.46, -0.25, 0.39, -0.08, -0.43, -0.50, 0.28, -0.42, -0.36, -0.38, -				
16	³ ACIP ⁰ (в отсутст 1.347, 1.381, 1.462, 1.502, 1.235, 1.227, 1.266, 1.349, 1.404, - , 1.469, 1.363, 1.462, 1.528, 1.467	Трим F') ($\mathbf{Q} = 0, \mathbf{M} = 3, \mathbf{E}_{0}$ 125.0 , 120.0, 120.0, 122.2, 123.7, 107.7, 126.3, 114.3, - , 126.8, 124.1, 110.0	= -28518.79 9 9.5, -152.1, -54.5, -42.2	B, D = 19.4 дБ) -0.46, -0.25, 0.39, -0.08, -0.43, -0.50, 0.28, -0.42, -0.36, -0.38, -				
16 17	³ ACIP ⁰ (B orcyter 1.347, 1.381, 1.462, 1.502, 1.235, 1.227, 1.266, 1.349, 1.404, - , 1.469, 1.363, 1.462, 1.528, 1.467 ³ ACI	ГВИИ F) ($\mathbf{Q} = 0, \mathbf{M} = 3, \mathbf{E}_{0}$ 125.0, 120.0, 120.0, 122.2, 123.7, 107.7, 126.3, 114.3, -, 126.8, 124.1, 110.0 P ⁻¹ (OH) ($\mathbf{Q} = -1, \mathbf{M} = 3, \mathbf{E}_{0}$	= -28518.79 3 9.5, -152.1, -54.5, -42.2 = -30588.32	B, D = 19.4 дБ) -0.46, -0.25, 0.39, -0.08, -0.43, -0.50, 0.28, -0.42, -0.36, -0.38, - B)				
16 17	³ ACIP ⁰ (B orcytc) 1.347, 1.381, 1.462, 1.502, 1.235, 1.227, 1.266, 1.349, 1.404, - , 1.469, 1.363, 1.462, 1.528, 1.467 ³ ACI 1.400, 1.382, 1.439, 1.514,	$\begin{array}{c} \textbf{(Q = 0, M = 3, E_0)} \\ \hline \textbf{(Prime F)} & (\textbf{Q = 0, M = 3, E_0)} \\ \hline \textbf{(125.0, 120.0, 120.0, 122.2, 123.7, 107.7, 126.3, 114.3, -, 126.8, 124.1, 110.0)} \\ \textbf{P^{-1}(OH)} & (\textbf{Q = -1, M = 3, E_0)} \\ \hline \textbf{(122.0, 120.9, 119.0, 119.0, 110.0)} \end{array}$	= -28518.79 3 9.5, -152.1, -54.5, -42.2 = -30588.32 3 -21.7,	B , D = 19.4 дБ) -0.46, -0.25, 0.39, -0.08, -0.43, -0.50, 0.28, -0.42, -0.36, -0.38, - B) -0.45, -0.15, 0.23, 0.20,				
16 17	³ ACIP ⁰ (в отсутст 1.347, 1.381, 1.462, 1.502, 1.235, 1.227, 1.266, 1.349, 1.404, - , 1.469, 1.363, 1.462, 1.528, 1.467 ³ ACI 1.400, 1.382, 1.439, 1.514, 1.284, 1.249, 1.250, 1.402,	$\begin{array}{c} \textbf{(P)} (\textbf{Q} = \textbf{0}, \textbf{M} = \textbf{3}, \textbf{E}_{\textbf{0}} \\ \hline \textbf{(P)} (\textbf{Q} = \textbf{0}, \textbf{M} = \textbf{3}, \textbf{E}_{\textbf{0}} \\ \hline \textbf{(25.0, 120.0, 120.0, 120.0, 122.2, 123.7, 107.7, 126.3, 114.3, -, 126.8, 124.1, 110.0 \\ \hline \textbf{P}^{-1}(\textbf{OH}) (\textbf{Q} = \textbf{-1}, \textbf{M} = \textbf{3}, \textbf{E}_{\textbf{0}} \\ \hline (22.0, 120.9, 119.0, 122.0, 116.0, 115.6, 122.0, 120.9, 110.0, 115.6, 120.0, 110.0 \\ \hline \textbf{(23.0, 120.9, 110.0, 115.6, 120.0, 110.0, 110.0, 110.0, 110.0 \\ \hline \textbf{(23.0, 120.9, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0 \\ \hline \textbf{(23.0, 120.9, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0 \\ \hline \textbf{(23.0, 120.9, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0 \\ \hline \textbf{(23.0, 120.9, 110.0, 100.0, 10$	= -28518.79 9 9.5, -152.1, -54.5, -42.2 = -30588.32 9 -21.7, -166.8,	B , D = 19.4 дБ) -0.46, -0.25, 0.39, -0.08, -0.43, -0.50, 0.28, -0.42, -0.36, -0.38, - B) -0.45, -0.15, 0.23, 0.20, -0.43, -0.46, 0.23, -0.49,				
16 17	³ ACIP ⁰ (в отсутст 1.347, 1.381, 1.462, 1.502, 1.235, 1.227, 1.266, 1.349, 1.404, - , 1.469, 1.363, 1.462, 1.528, 1.467 ³ ACI 1.400, 1.382, 1.439, 1.514, 1.284, 1.249, 1.250, 1.402, 1.400, 1.365, 1.453, 1.420,	TRUM F') ($\mathbf{Q} = 0, \mathbf{M} = 3, \mathbf{E}_{0}$ TRUM F') ($\mathbf{Q} = 0, \mathbf{M} = 3, \mathbf{E}_{0}$ 125.0, 120.0, 120.0, 122.2, 123.7, 107.7, 126.3, 114.3, -, 126.8, 124.1, 110.0 P ⁻¹ (OH) ($\mathbf{Q} = -1, \mathbf{M} = 3, \mathbf{E}_{0}$ 122.0, 120.9, 119.0, 122.0, 116.0, 115.6, 120.5, 117.4, 121.0,	= -28518.79 9 9.5, -152.1, -54.5, -42.2 = -30588.32 0 -21.7, -166.8, -58.0,	B , D = 19.4 дБ) -0.46, -0.25, 0.39, -0.08, -0.43, -0.50, 0.28, -0.42, -0.36, -0.38, - B) -0.45, -0.15, 0.23, 0.20, -0.43, -0.46, 0.23, -0.49, -0.49, -0.45, -0.38				

Рис. В2. Спектры поглощения СІР и его производных рассчитанных методом TDDFT/B3LYP/6-311**/PCM(вода) (квадратные точки с вертикальными линиями, цветные кривые - гауссовы огибающие) и экспериментальные спектры поглощения (черные кривые). Формы СІР следующие: 1 - NCIP (нейтральная), 2 - ZCIP (цвитерионная), 3 - ACIP (анионная), 4 - CCIP (катионная).

Рис. ВЗ. Спектры поглощения: нейтральной (1), цвитерионной (2) и анионной (3) формы СІР с группой СО₂ параллельной плоскости, а также их производные в триплетном состоянии рассчитанные методом TDDFT/B3LYP/6-311**/PCM(water) (светлые точки с вертикальными линиями). Экспериментальные спектры поглощения (черные кривые).

Рис. В4. Спектры поглощения: **цвитерионной** (1) и **анионной** (2) форм CIP с группой **CO**₂ **перпендикулярной** плоскости, а также их производные в триплетном состоянии, рассчитанные методом TDDFT/B3LYP/6-311**/PCM(вода) (светлые точки с вертикальными линиями на панелях 1а и 2а). Экспериментальные спектры поглощения (черные кривые). Панели 1b и 2b содержат гауссовы огибающие спектральных линий представленных на панелях 1а и 2а, соответственно (HWHM = 120 нм).

Рассмотрим более подробно изменения геометрической и электронной структуры СІР для синглетного и триплетного состояний, а также изменения, вызванные удалением аниона фтора и присоединением вместо него гидроксигруппы в триплетных СІР.

В синглетном состоянии наиболее энергетически выгодные структуры получены с параллельной ориентацией карбонильной группы ($\oplus_{2-3-20-21} \sim 0,0$). Здесь необходимо отметить существенное различие в энергиях нейтрального и цвиттер-ионного СІР, несмотря на двукратное превышение дипольного момента в ZСІР по сравнению с NСІР. Образование прочной водородной связи (H_{22} - O_{23}) в NСІР объясняет, почему полная энергия NСІР значительно меньше (1,0 эВ) полной энергии ZСІР. Однако нейтральная форма СІР в литературе практически не рассматривается. Мы полагаем, что полученное различие обусловлено неявным учетом растворителя в расчетах. Как мы показали ранее в [3], кластеризация молекул воды вокруг оксония позволяет снизить его энергию относительно одиночной воды до 0,6 эВ. Вероятно, что эффекты множественной кластеризации молекул воды вокруг некоторых ионных центров позволяют добиться более существенного выигрыша в энергии и/или разорвать сильную водородную связь в NCIP.

Сравнивая атомные заряды в каждом СІР, можно увидеть, что пары NCIP-CCIP и ZCIP-ACIP имеют схожие электронные конфигурации. Такая же аналогия видна и для их электронных спектров, если сравнить пары рисунков B2.1-B2.4 и B2.2-B2.3. Спектры в диапазоне длин волн 220 - 260 нм попарно совпадают. В паре NCIP-ZCIP максимумы около 320 нм смещены относительно друг друга. Можно предположить, что экспериментальный спектр является суммой спектров смеси нейтральной и цвиттер-ионной форм. Поэтому для триплетов мы рассматривали нейтральную, цвиттер-ионную и анионную формы (катионная форма не достигается при выбранных значениях pH в эксперименте). Сначала мы рассмотрели триплеты СІР и их следующие промежуточные продукты: ³СІР(без F⁻) и ³СІРs(OH), когда торсионный угол $\mathcal{D}_{2-3-20-2}$ равен нулю. Здесь (таблица B1, строки 5 - 7) параллельность карбонильной группы с плоскостью хинолина обусловлена прочной водородной связью, $R_{H22-023} \sim 1,6$ А. Следовательно, в случае ³ZСІР(OH) и ³АСІР(OH) параллельная конфигурации отсутствует, хотя она присутствует для других ³СІР (таблица B1, строки 8 - 11).

Очевидно, что геометрические и электронные структуры ³NCIP и ³NCIP(OH) также похожи, за исключением зарядов на фторе для ³NCIP и кислороде гидроксильной группы для ³NCIP(OH). Изменения геометрической структуры ³NCIP (без F⁻) незначительны, в то время как заряд на атоме C₆ изменяется существенно, положительное значение +0,25 становится отрицательным -0,03. Спектры ³NCIP и ³NCIP(OH), представленные на рисунке B3.1 черными и оранжевыми вертикальными линиями, также похожи, в то время как спектров с экспериментом по импульсному фотолизу показывает сильное расхождение в области 450–500 нм для ³NCIP и ³NCIP(OH) (рисунок B3.1). Если предположить, что спектральные линии, рассчитанные в функционале B3LIP, обычно смещены в красную область от экспериментальных максимумов, то результаты расчета для ³NCIP (без F⁻) находятся в умеренном согласии. Аналогичные рассуждения применимы к анализу двух других форм: ³ZCIP (строки 8–9 и рисунок B3.2) и ³ACIP (строки 10–11 и рисунок B3.3).

Более интересная картина наблюдается в случае перпендикулярной конфигурации группы CO_2 относительно плоскости хинолина ($\mathcal{D}_{2-3-20-21} \sim 90,0$). Поскольку цвиттер-ионные и анионные ³CIPs(OH) не имеют параллельных конфигураций, мы решили рассмотреть перпендикулярную конфигурацию также для интермедиатов ³CIPs и ³CIPs (без F⁻).

Полные энергии перпендикулярных конфигураций ³ZCIPs и ³ACIPs лишь немного выше (0,05 эВ), чем энергии соответствующих параллельных конфигураций. При сравнении результатов геометрических и электронных структур, сделанных по аналогии с вышеприведенным текстом для различных форм СIP, можно заметить те же сходства. Однако, наблюдается существенное изменение зарядов на атомах C_3 и C_{20} при повороте группы CO_2 на 90 градусов, что довольно сильно меняет электронную структуру π -системы хинолина. Поэтому наблюдаются существенные изменения в спектральных линиях, изображенных на рисунках B4.1a и B4.2b. Сравнение гауссовых огибающих рассчитанных спектральных линий с экспериментом по импульсному фотолизу показывает удовлетворительное согласие (рисунки B4.2a и B4.2b). Несмотря на смещение расчетных максимумов в красную область относительно максимумов, наблюдаемых в эксперименте, расчетные и наблюдаемые спектры качественно совпадают практически во всем наблюдаемом диапазоне. Заметные различия в синей области обусловлены тем, что эта область перекрывается с полосой поглощения основного состояния, которую необходимо вычесть из рассчитанного спектра поглощения.

В целом квантовохимические расчеты подтверждают механизм, в котором происходит отщепление аниона фтора от интермедиата ³СIP. Однако для хорошего совпадения экспериментальных спектров TA (рис. B4) и результатов квантово-химических расчетов необходимо фиксировать группу CO_2 всех возможных интермедиатов, находящихся в триплетном состоянии, в перпендикулярной геометрии (с торсионным углом $\angle_{2-3-20-21}$ –90.0) относительно плоскости хинолина. Стабилизация таких состояний может быть обусловлена влиянием неспецифической сольватации, связанной с образованием водородных связей между молекулами воды и полярными атомами кислорода [4].

Выводы. На основании данных стационарного поглощения, лазерного флэш-фотолиза и квантово-химических расчетов удалось показать, что для обоих рассмотренных антибиотиков, способных находится в различных состояниях до и после фотовозбуждения, а также их инермедиатов спектры УФ-вид. поглощения хорошо аппроксимируются TD-DFT расчетами с использованием подхода 6-311G**/B3LYP. Таким образом, с помощью расчетов удалось показать следующее: 1) Одноквантовое возбуждение САР приводит к гомолитическому разрыву связи β -C-C относительно ароматической системы с образованием радикала pNB и его партнера — алифатического радикала R•. 2) Фотодеградация СIP происходит по механизму, в котором происходит отщепление аниона фтора от интермедиата ³CIP.

Проведенные исследования расширяют представление о роли фотохимических процессов в трансформации САР, СІР и подобных антибиотиков в водной среде под воздействием солнечного света и в процессах УФ-обеззараживания. Они могут служить фундаментально основой в разработке фотохимических методов водоочистки от подобного рода соединений.

- Bays, J.P., Blumer, S.T., Baral-Tosh, S., Behar, D., Neta, P., 1983. Intramolecular electron transfer and dehalogenation of nitroaromatic anion radicals. J. Am. Chem. Soc. 105. https://doi.org/10.1021/ja00341a003.
- 2. Norris, R.K., Barker, S.D., Neta, P., 1984. Steric effects on rates of dehalogenation of anion radicals derived from substituted nitrobenzyl halides. J. Am. Chem. Soc. 106. https://doi.org/10.1021/ja00323a013.
- Tyutereva, Yu E., Snytnikova, O.A., Fedunov, R.G., Yanshole, V.V., Plyusnin, V.F., Xu, J., Pozdnyakov, I.P., 2023. Direct UV photodegradation of nalidixic acid in aqueous solutions: a mechanistic study. Chemosphere 334, 138952. https://doi.org/10.1016/j.chemosphere.2023.138952
- Bakhshiev, N.G., Kiselev, M.B., 1991. Selective nonspecific solvation under dielectric saturation and fluorescence spectra of dye solutions in binary solvents. J. Fluoresc. 1, 177–181. https://doi.org/10.1007/BF00865364.

6. Эффект от использования кластера в достижении целей работы

Использование квантово-химического моделирования на базе оборудования ИВЦ НГУ является значимой частью данной работы. Оно позволило интерпретировать экспериментальные данные и выявить наиболее оптимальные методы для воспроизведения экспериментальных спектров антибиотиков САР и СІР, а также их наиболее вероятных интермедиатов и фотопродуктов. Расчеты фотодеградации обоих антибиотиков. позволили выявить механизмы Использование многопроцессорных суперкомпьютеров и таких программных продуктов как Gaussian 16, с точки зрения расчетов спектров поглощения, является обязательным условием, поскольку позволяет проводить вычисления с высокой скоростью и получать надежные результаты, избегая различных ошибок вычислений, которые нередко возникают в других программных продуктах по квантовой химии. Осуществление квантово-химических расчетов является важным вкладом ИВЦ НГУ в получение достоверных научных результатов.

7. Перечень публикаций, содержащих результаты работы

1. Belikov, Y.A., Snytnikova, O. A., Sheven, D.G., Fedunov, R.G., Grivin, V.P., Pozdnyakov, I.P., 2024. Laser flash photolysis and quantum chemical studies of UV degradation of pharmaceutical drug chloramphenicol: Short-lived intermediates, quantum yields and mechanism of photolysis. Chemosphere 351, 141211. https://doi.org/10.1016/j.chemosphere.2024.141211

2. Tyutereva, Y. E., Snytnikova, O. A., Sheven, D.G., Fedunov, R.G., Yanshole, V.V., Grivin, V.P., Pozdnyakov, I.P., 2024. Mechanism of UV photodegradation of fluoroquinolone antibiotic ciprofloxacin in aqueous solutions. Chemosphere 367, 143643. https://doi.org/10.1016/j.chemosphere.2024.143643