ОТЧЕТ О ПРОДЕЛАННОЙ РАБОТЕ С ИСПОЛЬЗОВАНИЕМ ОБОРУДОВАНИЯ ИВЦ НГУ

1. Аннотация

Нитрат церия-аммония $(NH_4)_2Ce^{IV}(NO_3)_6$ (CAN) широко используется в качестве фотолитического источника радикалов NO₃• в ацетонитриле. Несмотря на это, механистические аспекты фотохимии CAN мало обсуждались в литературе. В данной работе фотохимия CAN в CH₃CN изучалась с использованием комбинации стационарных методов и лазерного импульсного фотолиза. Согласно литературным данным, внутрисферный перенос электрона оказался первичным фотохимическим процессом. Комплекс $(NH_4)_2Ce^{II}(NO_3)_5(CH_3CN)$ оказался единственным продуктом реакции, образующимся с достаточно высоким квантовым выходом (0.6 и 0.4 при возбуждении 308 и 355 нм соответственно). Распад радикалов NO₃• в основном вызван реакциями второго порядка; определены их константы скорости.

В целях последующего изучений комплексов переходных металлов включающих нитратные группы, были выполнены квантово-химические расчеты электронного спектра поглощения радикала NO3• при помощи пакета программ ORCA 4.2.1. В целях сравнения результатов использовался ряд различных подходов – TD-DFT, NEVPT2, EOM-CCSD. Рассмотрены наиболее часто используемые функционалы: B3LYP, CAMB3LYP и WB97X-D3 вместе с базисным набором def2-TZVP. Дополнительно использовался функционал B2PLYP вместе с базисным набором def2-TZVP/C. Расчеты NEVPT2/def2-TZVP/C и EOM-CCSD/def2-TZVP также были выполнены для улучшения энергий переходов. LR-CPCM был включен во все расчеты для учета неявной модели растворителя ацетонитрила. Показано, что среди всех функционалов наилучшее согласие с экспериментально наблюдаемыми спектрами радикала достигается в B2PLYP. Подход NEVPT2 с конфигурационным пространством (5,6) и (5,7) и подход EOM-CCSD также дают сравнимые с экспериментом значения энергий переходов.

2. Тема работы

Фотохимия нитратных комплексов церия (IV) в ацетонитриле.

3. Состав коллектива

- 1. Плюснин Виктор Федорович, д.х.н., заведующий лабораторией фотохимии, Институт химической кинетики и горения СО РАН, руководитель
- **2.** Глебов Евгений Михайлович, д.ф.-м.н., ведущий научный сотрудник, Институт химической кинетики и горения СО РАН, исполнитель
- **3.** Гривин Вячеслав Павлович, к.ф.-м.н., старший научный сотрудник, Институт химической кинетики и горения СО РАН, исполнитель
- 4. Федунов Роман Геннадиевич, к.ф.-м.н., старший научный сотрудник, Институт химической кинетики и горения СО РАН, исполнитель
- 5. Поздняков Иван Павлович, к.х.н., старший научный сотрудник, Институт химической кинетики и горения СО РАН, исполнитель

4. Информация о гранте

РФФИ 20-03-00708 А «Быстрые фотофизические и фотохимические процессы для координационных соединений, светоизлучающих и фотохромных молекулярных систем» (2020-2022), руководитель – Плюснин Виктор Федорович

5. Постановка задачи

5.1. Постановка задачи

В данной работе мы провели количественное исследование фотохимии CAN в чистом ацетонитриле с помощью как стационарного, так и лазерного импульсного фотолиза. Нашей целью было выяснить механизм фотолиза и заново измерить константы скорости реакций, ответственных за распад радикалов NO₃•. Теоретическая часть работы состояла в проведении квантово-химических расчетов спектров поглощения радикала NO₃• с целью выявления наиболее оптимального метода расчета.

5.2. Современное состояние проблемы

Нитрат церия-аммония (CAN) широко используется в катализе в качестве одноэлектронного окислителя [1–5]. В то время как наиболее распространенная степень окисления лантаноидов составляет +3, церий демонстрирует стабильные степени окисления +3 и +4. Электронная конфигурация основного состояния атома церия представляет собой [Xe]4f²6s², где [Xe] представляет собой конфигурацию атома ксенона. В случае Ce⁴⁺ электронная конфигурация имеет вид [Xe]4f⁰; вакантная f-оболочка определяет повышенную устойчивость этого катиона. Восстановительный потенциал Ce⁴⁺ достаточно высок (+1,61 эВ по сравнению с NHE [1]), что делает комплексы Ce(IV) лучшими окислителями по сравнению со многими другими комплексами металлов.

В фотохимии CAN известен как фотолитический источник NO₃• радикалов в водных растворах азотной кислоты [6–13] и в ацетонитриле [13,15–26]. Обычно фотовосстановление CAN (реакция (1)) используется для получения NO₃• с целью измерения констант скорости его реакций с различными органическими веществами [6–11,13–26]. Несмотря на это, механистические аспекты фотохимии CAN мало обсуждались в литературе. Продукты фотолиза не обнаружены, квантовые выходы не определены. Важные константы скоростей реакций распада NO₃• в чистом ацетонитриле (2–4) тщательно не измерялись; в литературе можно найти только оценки времени жизни [13,15–26].

$$(\mathrm{NH}_4)_2 \mathrm{Ce}^{\mathrm{IV}}(\mathrm{NO}_3)_6 \to (\mathrm{NH}_4)_2 \mathrm{Ce}^{\mathrm{III}}(\mathrm{NO}_3)_5 + \mathrm{NO}_3 \bullet \tag{1}$$

$$2NO_3 \bullet \rightarrow N_2O_6 \tag{2}$$

$$NO_3 \bullet + CH_3 CN \rightarrow HNO_3 + CH_2 \bullet CN \tag{3}$$

$$(NH_4)_2 Ce^{III}(NO_3)_5 + NO_3 \bullet \rightarrow (NH_4)_2 Ce^{IV}(NO_3)_6$$

$$\tag{4}$$

Анализ имеющихся в литературе данных о временах распада NO₃• в чистом ацетонитриле показал, что результаты разных работ кажутся противоречивыми. Ино с соавторами [14–17], основываясь на результатах лампового импульсного фотолиза CAN (характерное время возбуждающего светового импульса около 10 мкс), сообщили, что распад NO₃• соответствует первому порядку кинетический закон с характерным временем около 1 мс. Альфасси и др. [13] и дель Джакко и соавт. [20], которые использовали установки лазерного фотолиза с мощностью ок. возбуждающих импульсов длительностью 20–40 нс, установили, что радикалы NO₃•, образующиеся при фотолизе CAN в чистом ацетонитриле, исчезают с периодом полураспада ок. 100 мкс, а влияние реакций второго порядка (2, 4) было достаточным. Александер [23], использовавший спектроскопию резонаторного кольца вниз, сообщил о реакции (3) как о единственном пути распада радикалов NO₃•. Эту точку зрения недавно поддержали Nathaniel et al. [24–26] на основе данных наносекундного лазерного импульсного фотолиза. Однако период полураспада NO₃• в работах [23–26] был в несколько раз меньше, чем в [14–17], что, скорее всего, означало зависимость кажущегося времени жизни от начальной концентрации радикалов. Этого не должно быть в случае реакции псевдопервого порядка (3) в чистом ацетонитриле.

- 1. V. Nair, A. Deepthi, Chem. Rev. 107 (2007) 1862-1891.
- 2. V. Sridharan, J. Carlos Menendes, Chem. Rev. 110 (2010) 3804–3849.
- 3. N.P. Prajapati, R.H. Vekariya, H.D. Patel, Synt. Commun. 45 (2015) 2399-2425.
- 4. Y.-M. So, W.-H. Leung, Coord. Chem. Rev. 340 (2017) 172-197.
- 5. R. Zhao, L. Shi, Org. Chem. Front. 5 (2018) 3018-3021.
- 6. T.W. Martin, A. Henshall, R.C. Gross, J. Am. Chem. Soc. 85 (1963) 113-114.
- 7. L. Dogliotti, E. Hayon, J. Phys. Chem. 71 (1967) 3802-3808.
- 8. T.W. Martin, R.W. Glass, J. Am. Chem. Soc. 92 (1970) 5075-5083.
- 9. R.W. Glass, T.W. Martin, J. Am. Chem. Soc. 92 (1970) 5084-5093.
- 10. P.H. Wine, R.L. Mauldin III, R.P. Thorn, J. Phys. Chem. 92 (1988) 1156-1162.
- 11. Y. Katsumura, P.Y. Jiang, R. Nagaishi, T. Oishi, K. Ishigure, J. Phys. Chem. 95 (1991) 4435–4439.
- 12. H. Herrmann, M. Exner, R. Zellner, Ber. Bunzenges. Phys. Chem. 95 (1991) 598–604.
- 13. Z.B. Alfassi, S. Padmaja, P. Neta, R.J. Huie, J. Phys. Chem. 97 (1993) 3780-3782.
- 14. B. Venkatachalapathy, P. Ramamurthy, J. Photochem. Photobiol. A: Chem. 93 (1996) 1–5.
- 15. E. Baciocchi, T. Del Giacco, S.M. Murgia, G.V. Sebastiani, J. Chem. Soc. Chem. Commun. (1987) 1246–1248.
- 16. E. Baciocchi, T. Del Giacco, S.M. Murgia, G.V. Sebastiani, Tetrahedron 44 (1988) 6651–6660.
- 17. S. Akiho, O. Ito, M. Iino, Int. J. Chem. Kinet. 21 (1989) 667-676.
- 18. O. Ito, S. Akiho, M. Iino, J. Org. Chem. 54 (1989) 2436–2440.
- 19. S. Akiho, O. Ito, M. Iino, J. Phys. Chem. 93 (1989) 4079-4083.
- 20. O. Ito, S. Akiho, M. Iino, Bull. Chem. Soc. Jpn. 62 (1989) 1606-1611.
- 21. T. Del Giacco, E. Baciocchi, S. Steenken, J. Phys. Chem. 97 (1993) 5451-5456.
- 22. L. Grossi, Res. Chem. Intermed. 22 (1996) 315-324.
- 23. A.J. Alexander, Chem. Phys. Lett. 393 (2004) 138-142.
- 24. J.G. Nathanael, A.N. Hancock, U. Wille, Chem. Asian J. 11 (2016) 3188-3195.
- 25. J.G. Nathanael, L.F. Gamon, M. Cordes, P.R. Rablen, T. Bally, K.F. Fromm, B. Giese,
- U. Wille, ChemBioChem 19 (2018) 992-996.
- 26. J.G. Nathanael, L.F. Gamon, M. Cordes, P.R. Rablen, T. Bally, K.F. Fromm, B. Giese,
- U. Wille, J. Org. Chem. 84 (2019) 3405–3418.

5.3. Подробное описание работы, включая используемые алгоритмы

Квантово-химические расчеты электронных спектров поглощения радикалов NO₃• проводились с использованием пакета программ ORCA 4.2.1 [1]. Программное обеспечение ChemCraft использовалось для визуализации результатов вычисления [2]. Поскольку полученные результаты будут основой для дальнейших исследований комплексов переходных металлов, мы рассмотрели ряд наиболее часто используемых функционалов B3LYP [3,4], CAMB3LYP [5] и WB97X-D3 [6] вместе с базисом def2-TZVP [7]. Оптимизация геометрии радикала NO₃• в основном состоянии дублета проводилась в рамках неограниченного DFT подхода. Сетка DFT была установлена на GRID5. Критерий сходимости для оптимизации геометрии был установлен на VERYTIGHT. Был включен флаг RIJCOSX [8]. В расчетах не применялись ограничения по симметрии.

Стартуя с оптимизированных основных состояний, были выполнены одноточечные расчеты TD-DFT для получения энергии вертикального электронного перехода радикала NO₃•. В качестве эталона для TD-DFT электронные переходы SACASSCF были рассчитаны в активных пространствах (5,6), (5,7) с усреднением по 12 дублетам и 6 квартетам; и (7,10) с усреднением по 12 дублетам и 4 квартетам. Для проверки результатов приближение RI-MP2 использовалось для всех расчетов спектров методом TD-DFT. Дополнительно использовался функционал B2PLYP совместно с базисным набором

def2-TZVP/C [9]. Расчеты NEVPT2/def2-TZVP/C [10,11] и EOM-CCSD/def2-TZVP также были выполнены для улучшения энергий перехода. LR-CPCM [12–14] был включен во все расчеты для учета неявной модели растворителя с ацетонитрилом.

1. F. Neese, WIREs Rev. Comput. Mol. Sci. 8 (2018), e1327.

2. Chemcraft – graphical software for visualization of quantum chemistry computations. https://www.chemcraftprog.com.

3. A.D. Becke, Phys. Rev. A At. Mol. Opt. Phys. 38 (1988) 3098-3100.

4. C. Lee, W. Yang, R.G. Parr, Phys. Rev. B: Condens. Matter Mater. Phys. 37 (1988) 785–789.

5. T. Yanai, D.P. Tew, N.C. Handy, Chem. Phys. Lett. 393 (2004) 51-57.

6. Y.-S. Lin, G.-D. Li, S.-P. Mao, J.-D. Chai, J. Chem. Theory Comput. 9 (2013) 263–272.

7. F. Weigend, R. Ahlrichs, Phys. Chem. Chem. Phys. 7 (2005) 3297-3305.

8. F. Neese, F. Wennmohs, A. Hansen, U. Becker, Chem. Phys. 356 (2009) 98-109.

9. A. Hellweg, C. Hattig, S. Hofener, W. Klopper, Theor. Chem. Acc. 117 (2007) 587–597.

10. C. Angeli, R. Cimiraglia, S. Evangelisti, T. Leininger, J.-P. Malrieu, J. Chem. Phys. 114 (2001) 10252–10264.

11. C. Angeli, R. Cimiraglia, J.-P. Malrieu, J. Chem. Phys. 117 (2002) 9138-9153.

12. V. Barone, M. Cossi, J. Tomasi, J. Chem. Phys. 107 (1997) 3210-3221.

13. M. Cossi, G. Scalmani, N. Rega, V. Barone, J. Chem. Phys. 117 (2002) 43-54.

14. J. Tomasi, B. Mennucci, R. Cammi, Chem. Rev. 105 (2005) 2999-3094.

5.4. Полученные результаты

В данном разделе обсуждаются результаты квантово-химических расчетов спектра поглощения NO₃•, полученные различными методами с использованием кластера ИВЦ НГУ. В большинстве случаев рассчитанные спектральные линии смещены в коротковолновую область (450 нм < λ < 600 нм) относительно экспериментальных полос (550 нм < λ < 700 нм). Например, все расчеты, представленные на рис. 1: TD-DFT (зеленые линии) и SA-CASSCF (красные линии), включающие малые активные пространства CASSCF(5,6) и CASSCF(5,7), завышают энергии переходов. Увеличение активного пространства до CASSCF(7,10) приводит к лучшему совпадению расчетных и экспериментальных спектров. Следует отметить, что усреднение дублетных состояний вместе с квартетными состояниями позволяет лучше воспроизвести энергии переходов, чем усреднение только по дублетным состояниям. Также видно, что CASSCF(7,10) и обычно используемый B3LYP дают похожие результаты.

Для улучшения значений энергий перехода учитывалась динамическая корреляция (рис. 2). RI-MP2 аппроксимация, примененная к функционалам B3LYP, CAM-B3LYP и WB97X-D3, дала аналогичные положения спектральных линий, как показано на рис. 1 (следует отметить, что в литературе упоминались примеры, когда CAM-B3LYP завышала энергии переходов, например, в случае комплексов платиновых металлов). Однако использование двойного гибридного функционала B2PLYP с коррекцией возмущений позволило добиться лучших результатов и воспроизвести экспериментальный максимум полосы около 630 нм.

Неоднозначное поведение рассчитанных спектров наблюдалось для подхода NEVPT2. Наилучшее соответствие между экспериментальными и расчетными спектральными линиями было достигнуто за счет выбора малого активного пространства и усреднения только по дублетным состояниям. Увеличение активного пространства от (5,6) и (5,7) до (7,9) и (7,10) приводит к ухудшению результатов: спектральные линии тяготеют к более коротковолновой области.

Рис.1. Рассчитанные спектры (TDDFT с разными функционалами, CASSCF с усредненными состояниями по 12 дублетам и различному количеству квартетов), точки с вертикальными линиями и экспериментальный (сплошная линия, условные единицы) спектр радикала NO₃• в CH₃CN.

Рис.2. Рассчитанные спектры в приближении RI-MP2 (точки с вертикальными линиями) и экспериментальный (сплошная линия, условные единицы) спектр радикала NO₃• в CH₃CN.

Интересно рассмотреть простой расчет UHF/CIS/Def2-TZVP спектра NO₃• с уточнением энергий переходов методом EOM-CCSD. Поскольку энергии переходов UHF/EOM-CCSD, полученные программой ORCA, не включают силы осцилляторов, мы не приводим эти результаты на рисунках. Расчеты UHF/CIS продемонстрировали единственную длинноволновую линию с большой силой осциллятора (f = 0,037) на 871 нм (1,42 эВ). Когда EOM-CCSD был рассчитан по полученным UHF/CIS естественным орбиталям, переход 1,42 эВ оказался сдвинут до 1,98 эВ (626 нм). Этот результат хорошо согласуется с расчетом TDDFT/B2PLYP.

6. Эффект от использования кластера в достижении целей работы

Использование квантово-химического моделирования на базе оборудование ИВЦ НГУ является значимой частью данной работы. Оно позволило интерпретировать экспериментальные данные и выявить наиболее оптимальные методы для воспроизведения экспериментальных спектров радикалов. Не менее важным является возможность прогнозирования ожидаемых результатов. Использование многопроцессорных суперкомпьютеров с этой точки зрения является обязательным условием, поскольку позволяет проводить вычисления с высокой скоростью и переходить к использованию более ресурсоемких современных методов расчета. Осуществление квантово-химических расчетов, результаты которых представлены выше, например, в рамках метода EOM-CCSD, на персональных компьютерах является практически невозможным.

7. Перечень публикаций, содержащих результаты работы

1. Glebov E.M., Grivin V.P., Plyusnin V.F., Fedunov R.G., Pozdnyakov I.P., Yanshole V.V., Vasilchenko D.B. Photochemistry of cerium(IV) ammonium nitrate (CAN) in acetonitrile // Journal of Photochemistry & Photobiology, A: Chemistry. 2021. Vol. 418. P.113440 (Импакт-фактор: 3,306).