
ОТЧЕТ О ПРОДЕЛАННОЙ РАБОТЕ С ИСПОЛЬЗОВАНИЕМ ОБОРУДОВАНИЯ ИВЦ НГУ 

 

1. Аннотация 

В процессе работы были выполнены квантово-химические вычисления с целью интерпре-

тации механизма хемосорбции молекул оксида азота (NO) на гетероструктурах, состоящих из 

пленок фталоцианина кобальта (CoPc), декорированных наночастицами Ir-IrO2, а также для объ-

яснения роли этих наночастиц в формировании сенсорного отклика. С использованием метода 

DFT в программном пакете OpenMX (версия 3.9) с функционалом PBE, коррекцией дисперсион-

ного взаимодействия DFT-D3 и norm-conserving псевдопотенциалами были оптимизированы гео-

метрии наночастиц Ir147 и Ir147-IrO2, а также их комплексов с суперячейкой CoPc; дополнительно 

применялся метод SCC-DFTB в пакете DFTB+ (версия 24.1) для оценки эффективных зарядов в 

крупных системах. Расчеты показали, что при формировании гетероструктуры происходит пере-

нос электронов от CoPc к наночастицам, что приводит к увеличению концентрации дырок и, со-

ответственно, проводимости. Адсорбция NO усиливает этот эффект, особенно при взаимодей-

ствии с атомами Ir, однако именно наличие поверхностного слоя IrO2 обеспечивает обратимость 

сенсорного отклика за счет более слабой связи NO с атомами кислорода. Полученные данные 

подтвердили механизм электронной сенсибилизации и объяснили экспериментально наблюдае-

мую высокую чувствительность и обратимость отклика на уровне единиц ppb. 

 

2. Тема работы 

Квантово-химическое моделирование параметров взаимодействия молекул оксида азота 

(II) с гибридными структурами в виде тонких пленок фталоцианинов кобальта с наночастицами 

иридия на поверхности. 
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5. Научное содержание работы 

 5.1. Постановка задачи 

Работа всего проекта фактически состоит как из экспериментальных задач, направленных 

на получение новых материалов и создание прототипов газовых детекторов, так и из теоретиче-

ских, направленных на квантово-химическое моделирование гибридных соединений в виде на-

ночастиц Ir и Ir-IrO2 на поверхности тонких пленок фталоцианинов кобальта, а также взаимодей-

ствия с ними молекул NO. В случае квантово-химических вычислений, используя комплекс ИВЦ 

НГУ, ожидалось получение следующих результатов. 



1) Моделирование геометрической структуры наночастиц Ir147 и Ir147-IrO2, включая оп-

тимизацию их атомных координат для последующего анализа взаимодействия с фта-

лоцианиновой подложкой. 

2) Оптимизация геометрии кристаллической структуры фталоцианина кобальта (CoPc) с 

учетом периодичности и построение суперячейки, моделирующей тонкопленочную 

поверхность CoPc. 

3) Моделирование гетероструктур Ir/CoPc и Ir-IrO2/CoPc путем размещения наночастиц 

над поверхностью CoPc и оценка перераспределения электронной плотности на гра-

нице раздела. 

4) Анализ механизма электронной сенсибилизации: вычисление эффективных зарядов на 

компонентах гетероструктур (по Малликену) для демонстрации переноса электронов 

от CoPc к наночастицам и формирования дырочной проводимости. 

5) Исследование адсорбции молекул NO на поверхности наночастиц: оптимизация поло-

жения молекулы NO над Ir- или IrO2-сайтами, расчет энергии связывания (с учетом 

BSSE), оценка влияния адсорбции на зарядовое состояние подложки CoPc. 

6) Объяснение обратимости сенсорного отклика: сравнение энергий связывания и времен 

десорбции NO при взаимодействии с атомами Ir и поверхностными атомами кислорода 

в IrO2, что позволит обосновать роль оксидной оболочки в обеспечении обратимости. 

7) Исследование зависимости чувствительности от размера наночастиц: моделирование 

частиц разного размера (Ir55, Ir147, Ir309) и анализ количества переносимого заряда на 

единицу площади и на атом иридия, что позволит объяснить повышенную чувстви-

тельность при использовании более мелких наночастиц. 

Использование комплекса ИВЦ обусловлено необходимостью доступа к вычислительным 

ресурсам и к программному обеспечению (OpenMX и DFTB+) для проведения квантово-химиче-

ских вычислений. Указанное программное обеспечение является бесплатным, в настоящий мо-

мент оно установлено на суперкомпьютере и эффективно используется. 

 

 5.2. Современное состояние проблемы 

Оксид азота (NO) – ключевой биорегулятор, участвующий в регуляции физиологических 

процессов у млекопитающих [1]. Даже незначительные изменения его концентрации на уровне 

долей ppb в газовой фазе или субмикромолярных величин в жидкой фазе могут указывать на 

наличие ряда патологий: снижение уровня NO ассоциировано с гипертонией [3], атеросклерозом 

[4] и повышенной восприимчивостью к инфекциям [5], тогда как его избыток наблюдается при 

воспалительных заболеваниях кишечника [6], онкологических состояниях [7] и воспалении ды-

хательных путей [8]. 

Несмотря на важность NO как диагностического маркера, его прямое детектирование за-

труднено высокой реакционной способностью и крайне низкими концентрациями. На сегодняш-

ний день для измерения NO применяются такие методы, как ЭПР [9], ИК- и УФ-спектроскопия 

[10,11], люминесценция в ближнем ИК-диапазоне [12] и электрохимические подходы [13]. Од-

нако эти методы требуют сложного оборудования и не всегда пригодны для миниатюризации. В 

этом контексте хеморезистивные сенсоры представляют особый интерес благодаря своей про-

стоте, компактности и возможности использования для анализа выдыхаемого воздуха [14]. 

В качестве активных слоев таких сенсоров широко исследуются полупроводниковые ма-

териалы, включая металлофталоцианины (MPcs) [15,16], углеродные нанотрубки (CNTs) [17], 

графитовый нитрид углерода (g-C3N4) [18], оксиды металлов [19], халькогениды [20], металлоор-

ганические каркасы (MOFs) [21] и органические полимеры [22]. Среди них MPcs, в частности 

CoPc, выделяются хорошей обратимостью, быстрым откликом и стабильностью при детектиро-

вании газов [14]. 

Известно, что модификация полупроводниковых пленок наночастицами благородных ме-

таллов значительно улучшает их каталитические и сенсорные свойства [23-26]. Например, ранее 

нами показано, что гетероструктуры CoPc с наночастицами Au демонстрируют высокую чув-

ствительность и селективность к NO [27]. Недавние исследования также указывают на перспек-

тивность иридия и его оксидов: расчеты DFT предсказывают высокую энергию адсорбции и 



значительный перенос заряда между NO2 и Ir-легированным g-C3N4 [28], а гетероструктуры WO3 

и многослойные CNTs с наночастицами IrOx проявляют высокий отклик на NO2 при 100-150ºC 

даже при влажности до 50% [29,30]. 

Тем не менее, применение гетероструктур на основе CoPc и наночастиц Ir/IrO2 для пря-

мого детектирования NO остается практически неисследованным. Более того, в литературе 

крайне мало работ, посвященных хеморезистивному детектированию NO на уровне ppb [31-33], 

и почти отсутствуют данные о связи между составом, размером и концентрацией наночастиц и 

сенсорным откликом. Таким образом, остается открытым вопрос о возможности создания высо-

коэффективных, обратимых и селективных сенсоров NO на основе гетероструктур Ir-IrO2/CoPc, 

а также о физико-химических механизмах, лежащих в основе их функционирования. 

 

 5.3. Подробное описание работы, включая используемые алгоритмы 

В процессе эксплуатации комплекса ИВЦ были выполнены две серии квантово-химиче-

ских расчетов, различающихся используемым методом. Первая серия проводилась в рамках ме-

тода функционала плотности (DFT) [34] с использованием программного пакета OpenMX (версия 

3.9), обменно-корреляционного функционала PBE [35], norm-conserving псевдопотенциалов [36], 

поправки на дисперсионное взаимодействие DFT-D3 [37,38] и псевдоатомных орбиталей [39,40] 

(набор «quick» в терминах OpenMX). Оптимизация геометрии продолжалась до тех пор, пока 

силы, действующие на атомы, не становились меньше 1×10-4 а.е. В дальнейшем данный подход 

в работе обозначается как метод DFT. 

С учетом больших размеров рассматриваемых систем вторая серия расчетов была выпол-

нена в рамках метода самосогласованного заряда – приближенной теории функционала плотно-

сти (SCC-DFTB) [41] с использованием программного пакета DFTB+ (версия 24.1) [41], набора 

параметров auorg [42] и приближения Гамма-точки. В этом случае оптимизация геометрии не 

проводилась – рассчитывалась только электронная структура с последующим определением эф-

фективных атомных зарядов. Данный подход в дальнейшем обозначается как метод DFTB. 

 

 5.4. Полученные результаты 

Тонкопленочные фталоцианины кобальта являются полупроводниками p-типа [43]. В 

большинстве исследований основным механизмом сенсорного отклика таких материалов счита-

ется взаимодействие детектируемого газа с активным кислородом, адсорбированным на поверх-

ности [44-47]. Однако в наших экспериментах оксид азота подавался в ячейку в потоке инертного 

газа (аргона), что исключает участие активного кислорода. Следовательно, наиболее вероятным 

механизмом является прямая адсорбция/десорбция газа на поверхности гетероструктуры с по-

следующим переносом заряда между взаимодействующими компонентами, что изменяет элек-

тропроводность материала [45,46]. Для уточнения перераспределения электронной плотности 

при адсорбции NO были выполнены квантово-химические расчеты. 

Сначала была смоделирована и оптимизирована геометрия кубооктаэдрической наноча-

стицы Ir147 методом DFT. Поскольку это изолированный кластер, для интегрирования по зоне 

Бриллюэна использовалась только Гамма-точка (сетка 1×1×1). Затем на одной из квадратных гра-

ней Ir147 был добавлен слой IrO2, и полученная частица Ir147-IrO2 также была оптимизирована. 

Кристаллическая структура CoPc была взята из Кембриджской базы структурных данных. 

Атомные координаты были релаксированы при фиксированных параметрах элементарной 

ячейки, соответствующих экспериментальным значениям [48]. Учитывая периодичность струк-

туры CoPc, для расчетов использовалась сетка из 5×5×5 k-точек. На основе оптимизированной 

ячейки была построена суперячейка размером 2×6×1, моделирующая пленку CoPc с вакуумным 

зазором 60 Å в перпендикулярном направлении. 

Гетероструктуры Ir147/CoPc и Ir147-IrO2/CoPc были сконструированы путем размещения 

наночастиц над поверхностью пленки CoPc на расстоянии 3 Å от плоскости верхних атомов во-

дорода (Рисунок 1). Расчеты в Гамма-точке показали, что наночастицы аккумулируют электроны 

с поверхности CoPc, делая ее положительно заряженной (эффективный заряд q1, рассчитанный 

по схеме Малликена, Таблица 1). Это приводит к увеличению концентрации дырок – основных 



носителей заряда в CoPc – и, как следствие, к повышению проводимости гетероструктуры по 

сравнению с чистой пленкой CoPc. 

 

 

Рисунок 1. Геометрия структур Ir147/CoPc и Ir147-IrO2/CoPc: вид сбоку (вверху) и сверху (внизу) 

 

Таблица 1. Параметры гетероструктур: эффективные заряды пластины CoPc, энергии 

связи молекулы NO и время восстановления 

Гетероструктура q1, e q2, e q3, e Eb1, eV Eb2, eV τ1, s τ2, s 

Ir147/CoPc 0.360 0.372 – -2.200 – 2.55·1023 – 

Ir147-IrO2/CoPc 0.452 0.467 0.471 -1.865 -0.914 1.04·1018 521 

 

Далее молекула NO была размещена над наночастицами, и ее положение было оптимизи-

ровано при фиксированных координатах всех остальных атомов. Энергия связывания Eb1 была 

рассчитана с учетом поправки на ошибку суперпозиции базисных наборов (BSSE) по формуле: 

Eb1 = EHS/NO − EHS − ENO + EBSSE, 

где EHS/NO, EHS и ENO – полные энергии гетероструктуры с адсорбированной молекулой NO, самой 

гетероструктуры и изолированной молекулы NO соответственно. 

Результаты показали, что NO сильно связывается с атомами иридия (Таблица 1). Адсорб-

ция дополнительно увеличивает положительный заряд пленки CoPc до значения q2, что еще 

больше повышает проводимость. Однако высокие значения энергии связывания Eb1 указывают 

на крайне медленную десорбцию: расчетное время восстановления τ1 при 40°C составляет 1018-

1023 с, что на много порядков превышает экспериментально наблюдаемые ~90 с. Это означает, 

что, если бы NO взаимодействовал только с атомами Ir, отклик был бы необратимым, что проти-

воречит эксперименту. 

Учитывая, что в оксидных материалах функции рецепторов обычно выполняют поверх-

ностные атомы кислорода [49], были проведены дополнительные расчеты взаимодействия вто-

рой молекулы NO с атомом кислорода в IrO2 (Рисунок 2). Энергия связывания Eb2 оказалась вдвое 

меньше, чем при связывании с Ir, а расчетное время восстановления τ2 составило 521 с – 



величина, близкая по порядку к экспериментальному значению. При этом заряд пленки CoPc 

увеличился до q3 (Таблица 1). 

 

 

Рисунок 2. Геометрия структур Ir147/CoPc и Ir147-IrO2/CoPc с одной оптимизированной молеку-

лой NO (слева и посередине) и структуры Ir147-IrO2/CoPc с двумя оптимизированными молеку-

лами NO (справа) 

 

На основе расчетов предложен следующий механизм сенсорного отклика. При формиро-

вании гетероструктуры происходит перенос электронов от пленки CoPc к наночастицам Ir, а 

дырки (основные носители заряда в CoPc) перемещаются в обратном направлении до выравни-

вания уровня Ферми во всей системе (Рисунок 3). Это приводит к образованию обогащенного 

дырками слоя и увеличению проводимости. 

 

 

Рисунок 3. Изменение зонной структуры пластины CoPc и наночастиц Ir147 вследствие образо-

вания соответствующей гетероструктуры. Значения ширины запрещенной зоны CoPc (Eg) и 

энергии Ферми (Ef) получены с помощью расчетов DFT. Стрелками показано направление пере-

носа электронов (черные шарики) во время образования гетероструктуры и последующей ад-

сорбции молекул NO на поверхности наночастиц, направление переноса дырок (белые шарики) 

противоположное 

 

При адсорбции NO на поверхность наночастиц молекула принимает электроны (по-

скольку энергия ее LUMO ниже уровня Ферми системы), что усиливает перенос электронов от 



CoPc к наночастицам, дополнительно увеличивая концентрацию дырок и проводимость. Такой 

механизм известен в литературе как электронная сенсибилизация [50] и ранее использовался 

нами для объяснения отклика гетероструктур Au/CoPc на NO [27]. 

Если бы наночастицы состояли только из металлического Ir, адсорбция NO была бы прак-

тически необратимой. Однако наличие поверхностного слоя IrO2 обеспечивает обратимость: 

атомы кислорода в IrO2 выступают в роли более слабых рецепторов. После насыщения сильных 

центров (атомов Ir) в первом цикле дальнейший отклик обусловлен преимущественно адсорб-

цией/десорбцией NO на атомах кислорода, что позволяет достичь обратимого сигнала даже при 

относительно низких температурах (~40 °C). 

Экспериментально установлено, что гетероструктуры с более мелкими наночастицами де-

монстрируют повышенную чувствительность к NO. Для объяснения этого эффекта были смоде-

лированы наночастицы Ir55, Ir147 и Ir309 (без оксидной оболочки) и рассчитан перенос заряда от 

пленок CoPc к ним методом DFTB. В результате показано, что чем крупнее наночастица, тем 

больший суммарный заряд она извлекает из CoPc (повышая плотность положительного заряда 

на единицу площади пленки – Рисунок 4a). Однако заряд на один атом иридия оказывается выше 

у более мелких частиц (Рисунок 4b). 

 

 

Рисунок 4. Зависимости плотности положительного заряда пластины CoPc (a) и заряда на атом 

Ir наночастиц (b) от концентрации наночастиц на поверхности пластины CoPc 

 

Это означает, что при одинаковом количестве атомов Ir образование множества мелких 

наночастиц приводит к большей концентрации дырок в CoPc, чем одна крупная частица. Следо-

вательно, уменьшение размера наночастиц повышает чувствительность сенсора. Кроме того, уве-

личение концентрации наночастиц на поверхности также повышает плотность заряда и, соответ-

ственно, отклик, однако этот эффект насыщается при достижении определенной плотности по-

крытия. 
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6. Эффект от использования кластера в достижении целей работы 

Использование квантово-химического моделирования на базе оборудование ИВЦ НГУ яв-

ляется значимой частью всей работы, поскольку, во-первых, позволяет интерпретировать 



экспериментальные данные. Во-вторых, оно дает возможность осуществления направленного 

проведения синтеза необходимых материалов и прогнозирования ожидаемых результатов их ис-

пользования. Использование многопроцессорных суперкомпьютеров с этой точки зрения явля-

ется обязательным условием, поскольку позволяет проводить вычисления с высокой скоростью. 

 

7. Перечень публикаций, содержащих результаты работы 

1. Dorovskikh S.I., Klyamer D.D., Krasnov P.O., Shutilov R.A., Nasimov D.A., Prosvirin I.P., Vol-

chek V.V., Zharkov S.M., Khubezhov S.A., Morozova N.B., Basova T.V. Ultrafine Ir-IrO2 na-

noparticles for decoration of cobalt phthalocyanine films as an active component for highly sen-

sitive detection of nitric oxide. Materials Science and Engineering B 314, 118074 (2025). 

https://doi.org/10.1016/j.mseb.2025.118074. Импакт-фактор: 4.6. 

 


