Отчет о проделанной работе с использованием оборудования ИВЦ НГУ

1. Аннотация

Посредством квантово-химического моделирования методом DFT BP86-D3/def2-SVP в программном пакете ORCA и топологического анализа полученных функций распределения электронной плотности, осуществлённого в рамках теории Ричарда Бейдера «атомы в молекулах», была исследована природа связи молекулы NH₃ с фталоцианинами ванадила VOPcF_x, где x = 0,4,16. Показано, что она имеет характер «взаимодействия закрытых оболочек», а её прочность зависит от того, с какой стороны относительно атома кислорода ванадила координируется молекула аммиака. При этом также были проведены квантово-химические расчёты природы связи углеродных нанотруб с фталоцианином и его комплексами с атомами кобальта, меди и цинка методом DFT BH/DZP в программном пакете SIESTA. В результате установлено, каким образом энергия взаимодействия органической и неорганической частей в данных гибридных соединениях зависит от размеров нанотруб, их хиральности, ориентации фталоцианинов на поверхности и природы атома металла.

2. Тема работы

Формирование пленочных гетероструктур на основе благородных металлов и фталоцианинов металлов методами газофазного осаждения для адсорбционно-резистивных сенсоров на водород.

3. Состав коллектива

- 1. Басова Тамара Валерьевна, д.х.н., профессор РАН, главный научный сотрудник, Институт неорганической химии им. А.В. Николаева СО РАН
- 2. Викулова Евгения Сергеевна, к.х.н., научный сотрудник, Институт неорганической химии им. А.В. Николаева СО РАН
- 3. Доровских Светлана Игоревна, к.х.н., аспирант, Институт неорганической химии им. А.В. Николаева СО РАН
- 4. Клямер Дарья Дмитриевна, аспирант, Институт неорганической химии им. А.В. Николаева СО РАН
- 5. Краснов Павел Олегович, к.ф.-м.н., доцент, доцент кафедры технической физики, Сибирский государственный университет науки и технологий имени академика М.Ф. Решетнева
- 6. Николаева Наталия Сергеевна, к.т.н., научный сотрудник, Институт неорганической химии им. А.В. Николаева СО РАН
- 7. Шушанян Артём Даниелович, младший научный сотрудник, Институт неорганической химии им. А.В. Николаева СО РАН

4. Информация о гранте

РФФИ №18-33-20128 «Формирование пленочных гетероструктур на основе благородных металлов и фталоцианинов металлов методами газофазного осаждения для адсорбционнорезистивных сенсоров на водород», руководитель – Николаева Наталия Сергеевна

5. Научное содержание работы

5.1. Постановка задачи

Проект направлен на разработку научных подходов к созданию новых гибридных структур «металл/органический полупроводник» методами газофазного осаждения на основе благородных металлов (Pd, Au, Ag) и фталоцианинов металлов (или их композитных материалов с углеродными нанотрубками) как активных слоев адсорбционно-резистивных сенсоров для селективного определения водорода в широком интервале концентраций (10-10000 ppm) в присутствии мешающих газов.

5.2. Современное состояние проблемы

Чрезвычайно важной задачей материаловедения является проблема создания датчиков для определения водорода в широком интервале концентраций. В настоящее время известны некоторые коммерчески доступные сенсоры [1], среди которых полупроводниковые газовые детекторы имеют такие преимущества, как малые размеры, высокую чувствительность, надежность и широкий динамический диапазон (около четырех порядков). Чувствительными материалами являются полупроводниковые неорганические (оксиды, нитриды металлов и т.д.) или органические соединения (электроактивные полимеры или молекулярные кристаллы, например, фталоцианины металлов), которые обладают высокой чувствительностью, однако проблема их селективности до сих пор остается нерешенной, что ограничивает их широкое применение в сенсорных устройствах. Одним их возможных способов решения проблемы селективности является использование гибридных функциональных материалов на основе полупроводников и благородных металлов (Pd, Pt, Au и т.д.). Такой подход часто реализуют в сенсорах на водород, например, на основе диодов Шоттки, где среди многочисленных комбинаций материалов (Pd/AlN/SiC, Pt/GaAs, Pt/SiC и т.д. [2-5]) наибольшее количество исследований посвящено тонким пленкам SnO₂, TiO₂ и ZnO, а также In₂O₃, WO₃, CuO и NiO, в качестве материалов, чувствительных к водороду [5]. Например, Lu et al. [6] получен водородный сенсор на основе наноструктурированных пленок SnO₂ с Pd-электродами с высокой чувствительностью и временем отклика менее 10 с (100 ppm H₂, рабочая температура 300°С). Ряд работ посвящен исследованию сенсорных свойств материалов на основе нанопористых пленок и нанотрубок TiO₂ [7-9]. Водородный датчик на основе нанотрубок ZnO и Pt с максимальной чувствительностью при комнатной температуре для концентрации H₂ 2500 ppm и временем отклика ~55 с. был получен авторами [10]. Аналогичные исследования также были проведены в работах [11, 12].

Также чувствительность сенсора может быть увеличена при нанесении на поверхность полупроводника наночастиц металла [13]. Так, палладий из-за его выдающихся каталитических свойств широко используется в этих целях. Установлено, что чувствительность мезопористого SnO₂, допированного Pd (0,2%) почти в 10 раз больше, чем у чистого SnO₂ (концентрация H₂ 1000 ppm при 250°С) [14]. Тоап et al. [15] реактивным магнетронным напылением получали тонкие пленки SnO₂, покрытые палладиевыми островками, и обнаружили, что сенсор с толщиной SnO₂ 40 нм и размерами частиц Pd ~10 нм имеют максимальную чувствительность и селективность (концентрация H₂ 200-250 ppm при 400°C, время отклика 14 с). Fardindoost et al. также исследовали сенсорные свойства тонкопленочных пленок WO₃ с наночастицами Pd, полученных золь-гель методом [16]. Чувствительность повышается с увеличением концентрации наночастиц Pd во всем диапазоне температур (от 30 до 350°С), что связано с уменьшением размера кристалла WO₃ и эффектом электронной сенсибилизации на границе раздела Pd/WO₃. В то время как в работе [17] высокую сенсорную чувствительность наностенок MnO₂, покрытых Pd, (в диапазоне 10-10000 ppm H₂ при 100°C) объясняют механизмом химической сенсибилизации (spillover эффект). Вероятно, влияние поверхностных металлов, образующих поверхностные ассоциаты или кластеры может проявляться различным образом и иметь различную природу воздействия на электропроводность. Авторами [18] методами низкотемпературной туннельной микроскопии и DFT расчета был исследован spillover эффект водорода на изолированных атомах Pd на Cu(111), в то время как на поверхности Au(111) такой механизм оказался термодинамически невыгоден.

Помимо оксидных полупроводников в настоящее время вызывают значительный интерес гибридные материалы на основе органических полупроводников, работающих при комнатных температурах. К основным их преимуществам относится малая величина времен отклика и регенерации, обратимость сенсорного отклика при комнатной температуре и возможность получения пленок на гибких носителях. В литературе имеются отдельные примеры использования сенсоров на водород на основе пленок композитов палладия с полимерами, одностенными углеродными нанотрубками (SWCNT) и восстановленным оксидом графена (rGO) [19, 20], которые показывают, что данные сенсоры обладают лучшими характеристикам по сравнению с однокомпонентными активными слоями.

SWCNT, покрытые наночастицами палладия, используются в сенсорах для определения концентрации молекулярного водорода [21] и метана [22]. Гибридный сенсор полимметилметакрилат/наночастицы Pd/однослойный графен высокой селективностью по H_2 был получен в работе [23] (диапазон концентраций 0,025 до 2%). В работе [24] были получены эпитаксиальные слои графена методом CVD, покрытые тонкой пленкой Pt. В работе [25] исследованы сенсорные свойства гибридного материала на основе восстановленного оксида графена, покрытого наночастицами палладия и платины (Pt-Pd/rGO) и установлено, что на процессы десорбции водорода с поверхности Pt-Pd/rGO оказывает влияние состав газа-носителя: при продувке воздухом происходит связывание водорода, адсорбированного на наночастицах Pd, молекулами кислорода с образованием H₂O; в результате концентрация H₂ на поверхности слоя уменьшается, что приводит к снижению величины сенсорного отклика и времени его регенерации до 15 минут по сравнению с инертным газом.

Пленки фталоцианинов металлов (МРс) и из композитных материалов с углеродными нанотрубками и графеном также находят широкое применение в качестве активных слоев адсорбционно-резистивных и оптических сенсоров. МРсѕ обладают высокой термической и химической стабильностью по сравнению с большинством органических материалов, имеют уникальное химическое строение, позволяющее получать огромное множество соединений с различными свойствами путем варьирования периферийных заместителей макроцикла. Их тонкие пленки могут быть получены различными методами, что делает возможным их использование в различных электронных устройствах [26]. Способность пленок фталоцианинов изменять электрическую проводимость в присутствии химически активных газов вследствие протекания реакций с переносом заряда обуславливает возможность их применения в адсорбционнорезистивных сенсорах. Имеются одиночные примеры использования двухслойных структур фталоцианин/пленка палладия для определения водорода [27].

Ранее с участием авторов проекта опубликованы результаты исследования адсорбционно-резистивного отклика на водород двухслойных пленочных структур палладий/фталоцианин палладия с толщиной палладиевого слоя до 200 нм в интервале концентраций 1-30% [28]. Определено, что данные структуры обладают высокой селективностью по водороду, при этом сенсорный отклик зависит от толщины верхнего палладиевого слоя: максимальный отклик на H₂ наблюдался при толщине Pd 50-55 нм.

Следует отметить, что в литературе отсутствуют работы, посвященные исследованию влияния биметаллических наноструктур на сенсорных свойства органических полупроводников, хотя давно известно, что твердые растворы на основе палладия (PdAu, PdAg, PdCu, и т.д. [29-30] обладают высокой проницаемостью и селективностью по водороду, а также увеличивают химическую устойчивость к «отравлению» активными газами, например, CO_2 , H_2S . На примере работы [31], где наностержни ZnO покрывают биметаллическими частицами Pt-Au, показано, что чувствительность такого материала намного выше по сравнению с чистым ZnO и ZnO с монометаллическими частицами (концентрация H_2 250 ppm, рабочая температура 250°C).

Таким образом, исследование сенсорного отклика гетероструктур на основе наночастиц благородных металлов и тонких палладийсодержащих слоев (толщиной 10-100 нм), нанесенных на пленки фталоцианинов металлов, для получения активных слоев сенсоров является основной задачей данного проекта.

- 1. http://www.gassensor.ru/ru/gas/vodorod-h2.
- 2. J. Schalwig, G. Müller, U. Karrer, et al., Appl. Phys. Lett. (2002).
- 3. F. Serina, K.Y.S. Ng, C. Huang, et al., Appl. Phys. Lett. (2001).
- 4. N. Singh, A. Kumar, D. Kaur, et al., Sens. Actuators, B (2018).
- 5. H.S. Gu, Z. Wang, Y.M. Hu, Sensors (2012).
- 6. C. Lu, Z. Chen, V. Singh, Sens. Actuators, B (2010).
- 7. Y. Shimizu, T. Hyodo, M. Egashira, Sens. Actuators, B (2007).
- 8. Y. Shimizu, N. Kuwano, T. Hyodo, M. Egashira, Sens. Actuators, B (2002).
- 9. Y. Ling, F. Ren, J. Feng, et al., Int. J. Hydrogen Energy (2016).
- 10. S.N. Das, J.P. Kar, J.-H. Choi, et al., J. Phys. Chem. C (2010).

- 11. S. Kim, B.S. Kang, F. Ren, et al., Appl. Phys. Lett. (2004).
- 12. M. Shafiei, J. Yu, R. Arsat, et al., Sens. Actuators, B (2010).
- 13. Y. Luo, C. Zhang, B. Zheng, et al., Int. J. Hydrogen Energy (2017).
- 14. J. Zhao, W. Wang, Y. Liu, et al., Sens. Actuators, B (2011).
- 15. N. Van Toan, N. Viet Chien, N. Van Duy, et al., J. Hazard. Mater. (2016).
- 16. S. Fardindoost, A. Irajizad, F. Rahimi, R. Ghasempour, Int. J. Hydrogen Energy (2010).
- 17. Sanger, A. Kumar, A. Kumar, R. Chandra, Sens. Actuators, B (2016).
- 18. H.L. Tierney, A.E. Baber, E.C.H. Sykes, J. Phys. Chem. C (2009).
- 19. B. Jang, K.Y. Lee, J.S. Noh, W. Lee, Sens. Actuators, B (2014).
- 20. P.Á. Szilágyi, R.J. Westerwaal, R. van de Krol, et al., J. Mater. Chem. C (2013).
- 21. Sayago, E. Terrado, M. Aleixandre, et al., Sens. Actuators, B (2007).
- 22. Y. Lu, J. Li, J. Han, et al., Chem. Phys. Lett. (2004).
- 23. J. Hong, S. Lee, J. Seo, et al., ACS Appl. Mater. Interfaces (2015).
- 24. B.H. Chu, C.F. Lo, J. Nicolosi, et al., Sens. Actuators, B (2011).
- 25. Y. Peng, J. Ye, L. Zheng, K. Zou, RSC Adv. (2016).
- 26. T.E. Phy, Chemical Sensors, Springer Netherlands, 1988.
- 27. W. Jakubik, M. Krzywiecki, E. MacIak, M. Urbańczyk, Sens. Actuators, B (2012).
- 28. N. S. Nikolaeva, R.G. Parkhomenko, D.D. Klyamer, et al., Int. J. Hydrogen Energy (2017).
- 29. N.W. Ockwig, T.M. Nenoff, Chem. Rev. (2007).
- 30. Ø. Hatlevik, S.K. Gade, M.K. Keeling, et al., Sep. Purif. Technol. (2010).
- 31. F. Fan, J. Zhang, J. Li, et al., Sens. Actuators, B (2017).

5.3. Подробное описание работы, включая используемые алгоритмы

Природа связи молекулы аммиака NH₃ с фталоцианинами ванадила VOPcF_x (Рисунок 1), где x = 0,4,16, оценивалась посредством проведения топологического анализа функции распределения электронной плотности в соответствующих соединениях в рамках теории Ричарда Бейдера «атомы в молекулах» (*atoms in molecules*, AIM) [1-3]. Данные функции были получены в результате квантово-химических вычислений методом теории функционала плотности DFT BP86/def2-SVP [4-7] с использованием полуэмпирического дисперсионного потенциала *Grimme* [8,9] в программном пакете ORCA [10,11].

Рисунок 1 – Структурная формула VOPc (R₁=R₂=H), VOPcF₄ (R₁=H, R₂=F) и VOPcF₁₆ (R₁=R₂=F)

В процессе поиска равновесного геометрического строения всех рассматриваемых соединений какие-либо ограничения по симметрии не использовались (точечная группа симметрии *C*₁). При этом спиновая мультиплетность фталоцианинов ванадила и их соединений с молекулой аммиака была равна двум, а процедура поиска многоэлектронной волновой функции в каждом случае осуществлялась методом неограниченного по спину самосогласованного поля (spin unrestricted SCF). Дополнительно в случае каждой отдельной структуры проводился расчёт её колебательного спектра с использованием приближения RI [12-17]. Здесь критерием достижения равновесного геометрического строения помимо минимума полной энергии соединения являлось отсутствие в его спектре отрицательных частот. При этом энергия связи (E_b) фталоцианинов ванадила с молекулой NH₃ далее рассчитывалась по разности полных энергий соответствующей структуры и её составляющих:

$$E_b = E_{\text{NH}_3} + E_{\text{VOPcF}_x} - E_{\text{VOPcF}_x - \text{NH}_3} - \Delta E_{\text{BSSE}}, \qquad (1)$$

где ΔE_{BSSE} — поправка к энергии связи, учитывающая ошибку суперпозиции базисного набора, которая в свою очередь оценивалась следующим образом:

$$\Delta E_{\text{BSSE}} = \left(E_{\text{VOPcF}_x}^{\text{VOPcF}_x - \text{NH}_3} + E_{\text{NH}_3}^{\text{VOPcF}_x - \text{NH}_3}\right) - \left(E_{\text{VOPcF}_x}^{\text{VOPcF}_x - \text{NH}_3} + E_{\text{NH}_3^*}^{\text{VOPcF}_x - \text{NH}_3}\right).$$
(2)

Здесь верхний индекс VOPcF_x-NH₃ указывает на то, что геометрии, соответственно, VOPcF_x и NH₃ были взяты из оптимизированного соединения молекул фталоцианина и аммиака, при этом оптимизация их геометрического строения не проводилась, а осуществлялся только лишь расчёт электронного строения. Звёздочка в нижнем индексе означает, что рассматривался указанный фрагмент целого соединения в случае, когда атомы второго фрагмента были фиктивными. В данном случае подразумевается, что атомов, как таковых, не было, они представляли собой точки, описываемые соответствующими базисными наборами атомных орбиталей.

Для осуществления топологического анализа функции распределения электронной плотности в соединениях VOPcF_x-NH₃ использовались их многоэлектронные волновые функции, полученные дополнительно методом ограниченной теории открытых оболочек Кона-Шэма (*restricted open-shell Kohn-Sham (ROKS) theory*) [18]. При этом оптимизация геометрического строения рассматриваемых соединений не проводилась, а были использованы данные об их структуре, полученные на предыдущем шаге методом неограниченного по спину самосогласованного поля (spin unrestricted SCF).

В работе также рассматривались соединения углеродных нанотруб (УНТ) с фталоцианином и его комплексами с атомами кобальта, меди и цинка (MePc, где Me = H₂, Co, Cu и Zn). Целью явилось установление влияния хиральности УНТ, их диаметра и природы атома металла фталоцианинов на прочность связи в рассматриваемых соединениях. С этой точки зрения были выбраны углеродные «*zigzag*» и «*armchair*» нанотрубы с диаметрами в диапазоне 7-14 Å, то есть УНТ(*n*,0), где $n = 9 \div 18$, и УНТ(*m*,*m*), где $m = 5 \div 10$, соответственно.

В случае соединений H₂Pc, аналогично работе [19], рассматривались три возможные ориентации фталоцианина на поверхности углеродных нанотруб: связи N-H образуют угол 45° с осью УНТ (Position 1), связи N-H параллельны (Position 2) и перпендикулярны (Position 3) данной оси (Рисунок 2). Для соединений с атомами металлов вторая и третья ориентации эквиваленты вследствие симметрии, поэтому рассматривались только две – Position 1 и Position 2.

Квантово-химическое моделирование геометрического строения данных гибридных соединений и природы взаимодействия фталоцианинов с поверхностью углеродных нанотруб осуществлялось в рамках метода DFT с использованием функционала Ван-дер-Ваальса BH [20-22] и базиса атомных орбиталей DZP [23,24]. Все вычисления выполнялись в программном пакете SIESTA [25], использующем псевдопотенциалы. В данном подходе внутренние электроны атомов по отдельности не рассматриваются, они вместе с атомным ядром фактически представляют собой ион, с которым взаимодействуют внешние электроны.

При оптимизации геометрического строения всех соединений для интегрирования по первой зоне Бриллюэна данная зона разбивалась на сетку $1 \times 1 \times 5$ (ось УНТ направлена вдоль оси *z*), выбранную по схеме Монхорста-Пака [26]. Релаксация геометрии осуществлялась до значения максимальных сил, действующих на атомы, равного 0,05 эВ/Å.

Все исследуемые объекты рассматривались в виде суперячеек (Рисунок 2) с учётом периодических граничных условий вдоль осей углеродных нанотруб. Длина вектора трансляции в случае VHT(n,0) и их комплексов с фталоцианинами составляла 6*a*, а в случае VHT(m,m) - 11a,

где значения а (длина элементарной ячейки углеродной нанотрубы вдоль её оси) предварительно были рассчитаны для отдельных УНТ (Таблица 1). Для исключения взаимодействия между образами структур вдоль направлений х и у задавался вакуумный промежуток. В случае отдельных углеродных нанотруб он составлял 5*a* или 6*a* для «*zigzag*» УНТ в зависимости от их диаметра, 9а или 11а для «armchair» УНТ. В случае соединений углеродных нанотруб с фталоцианинами данные значения были равны, соответственно, 6а или 7а и 11а или 13а. Диаметр d УНТ определялся, как удвоенное среднее расстояние от оси нанотрубы до каждого атома.

Рисунок 2 – Три варианта расположения H₂Pc на поверхности УНТ(9,0)

Габлица 1 – Длины элементарных ячеек углеродных нанотруб вдоль их осей										
	УНТ	(9,0)	(10,0)	(11,0)	(12,0)	(13,0)	(14,0)	(15,0)	(16,0)	
	<i>a</i> , Å	4,283	4,283	4,283	4,296	4,283	4,294	4,294	4,294	
	d, Å	7,16	7,95	8,73	9,48	10,29	11,05	11,83	12,61	
	УНТ	(17,0)	(18,0)	(5,5)	(6,6)	(7,7)	(8,8)	(9,9)	(10,10)	
	<i>a</i> , Å	4,283	4,283	2,464	2,472	2,472	2,471	2,470	2,468	
	d, Å	13,43	14,22	6,93	8,27	9,63	10,99	12,35	13,72	

Таблица 1 – Длины элементар	рных ячеек углер	одных нанотруб	вдоль их осей
-----------------------------	------------------	----------------	---------------

Энергия связи фталоцианинов с углеродными нанотрубами рассчитывалась по разности полных энергий составляющих фрагментов соединения и его самого:

$$E_b = E_{\text{MePc}} + E_{\text{CNT}} - E_{\text{MePc-CNT}} - \Delta E_{\text{BSSE}},$$
(3)

где ΔE_{BSSE} – поправка к энергии связи, учитывающая ошибку суперпозиции базисного набора, которая в свою очередь оценивалась следующим образом:

$$\Delta E_{\rm BSSE} = \left(E_{\rm CNT}^{\rm MePc-CNT} + E_{\rm MePc}^{\rm MePc-CNT}\right) - \left(E_{\rm CNT^*}^{\rm MePc-CNT} + E_{\rm MePc^*}^{\rm MePc-CNT}\right). \tag{4}$$

Здесь верхний индекс MePc-CNT указывает на то, что геометрии, соответственно, УНТ и MePc были взяты из оптимизированного соединения углеродной нанотрубы и фталоцианина, при этом оптимизация их геометрического строения не проводилась, а осуществлялся только лишь расчёт электронного строения. Звёздочка в нижнем индексе означает, что рассматривался указанный фрагмент целого соединения в случае, когда атомы второго фрагмента были фиктивными. В данном случае подразумевается, что атомов, как таковых, не было, они представляли собой точки, описываемые соответствующими базисными наборами атомных орбиталей.

- 1. R.F.W. Bader, H. Essén, J. Chem. Phys. 80 (1984) 1943-1960.
- 2. R.F.W. Bader, Atoms in Molecules: A Quantum Theory, USA: Oxford University Press, 1994.
- 3. I.S. Bushmarinov, K.A. Lyssenko, M.Y. Antipin, Russ. Chem. Rev. 78 (2009) 283-302.
- 4. A.D. Becke, Phys. Rev. A 88 (1988) 3098-3100.
- 5. J.P. Perdew, Phys. Rev. B 33 (1986) 8822-8824.
- 6. A. Schaefer, H. Horn, R. Ahlrichs, J. Chem. Phys. 97 (1992) 2571-2577.
- 7. A. Schaefer, C. Huber, R. Ahlrichs, J. Chem. Phys. 100 (1994) 5829-5835.
- 8. S. Grimme, S. Ehrlich, L. Goerigk, J. Comput. Chem. 32 (2011) 1456-1465.
- 9. S. Grimme, J. Antony, S. Ehrlich, H. Krieg, J. Chem. Phys. 132 (2010) 154104.
- 10. F. Neese, WIREs Comput. Mol. Sci. 2 (2012) 73-78.
- 11. F. Neese, WIREs Comput. Mol. Sci. (2017) e1327.
- 12. E.J. Baerends, D.E. Ellis, P. Ros, Chem. Phys. 2 (1973) 41-51.
- 13. B.I. Dunlap, J.W.D. Connolly, J.R. Sabin, J. Chem. Phys. 71 (1979) 3396-3402.
- 14. C. Van Alsenoy, J. Comp. Chem. 9 (1988) 620-626.
- 15. R.A. Kendall, H.A. Früchtl, Theor. Chem. Acc. 97 (1997) 158-163.
- 16. K. Eichkorn, O. Treutler, H. Öhm, Chem. Phys. Lett. 240 (1995) 283-290.
- 17. K. Eichkorn, F. Weigend, O. Treutler, Theor. Chem. Acc. 97 (1997) 119-124.
- 18. M. Filatov, S. Shaik, Chem. Phys. Lett. 288 (1998) 689-697.
- 19. J.D. Correa, W. Orellana, Phys. Rev. B. 86 (2012) 125417.
- 20. M. Dion, H. Rydberg, E. Schröder, et al., Phys. Rev. Lett. 92 (2004) 246401.
- 21. G. Román-Pérez, J. M. Soler, Phys. Rev. Lett. 103 (2009) 096102.
- 22. K. Berland, P. Hyldgaard, Phys. Rev. B 89 (2014) 035412.
- 23. Canal Neto, E.P. Muniz, R. Centoducatte, F.E. Jorge, J. Mol. Struct. 718 (2005) 219.
- 24. G.G. Camiletti, S.F. Machado, F.E. Jorge, J. Comp. Chem. 29 (2008) 2434.
- 25. J.M. Soler, E. Artacho, J.D. Gale, et al., J. Phys.: Condens. Matter 14 (2002) 2745.
- 26. H.J. Monkhorst, J.D. Pack, Phys. Rev. B 13 (1976) 5188.

5.4. Полученные результаты

Рассматривалось два возможных направления присоединения молекулы аммиака к фталоцианинам ванадила. В первом случае она координировалась атомом азота к атому ванадия с противоположной стороны относительно атома кислорода. Во втором случае – непосредственно со стороны атома кислорода (Рисунок 3).

Топологические параметры функции электронной плотности $\rho(\mathbf{r})$ в критической точке связи (*bond critical point*, BCP) (3,-1) между атомом ванадия и атомом азота молекулы аммиака, находящейся в шестом координационном положении атома металла, указывают на то, что взаимодействие данных двух атомом относится к типу «взаимодействие закрытых оболочек» (*closed-shell interaction*). Следовательно, химическая связь между ними не является ковалентной. В пользу этого свидетельствуют достаточно невысокие значения электронной плотности $\rho(\mathbf{r})$ и её лапласиана $\nabla^2 \rho(\mathbf{r})$ в указанной критической точке связи (3,-1). При этом значение $\nabla^2 \rho(\mathbf{r})$ является положительным, а отношение собственных значений ($|\lambda_1|/\lambda_3$) матрицы гессиана электронной плотности меньше единицы (Таблица 2).

Аналогичный характер межатомного взаимодействия наблюдается и в случае второго способа координации молекулы аммиака. Однако здесь необходимо выделить образование уже двух критических точек связей. Одна возникает между атомом кислорода и атомом водорода молекулы NH_3 , а вторая – между атомом C_{α} фталоцианина и атомом азота молекулы аммиака.

Отличием от предыдущего способа координации являются ещё более низкие значения $\rho(\mathbf{r})$ и $\nabla^2 \rho(\mathbf{r})$ (Таблица 3).

Рисунок 3 – Возможные расположения молекулы NH₃ относительно VOPc: в шестом координационном положении атома ванадия (слева) и со стороны атома кислорода (справа). Зелёными шариками обозначены критические точки связей

Таблица 2 – Топологические параметры функции $\rho(\mathbf{r})$ в ВСР между атомов ванадия и атомом азота молекулы NH₃, находящейся в пятом координационном положении атома металла

Structure	$ ho(\mathbf{r}), \ e/\text{\AA}^3$	$ abla^2 ho(\mathbf{r}), $ $ e/Å^5 $	$ \lambda_1 /\lambda_3$	Evn, eV	E_b , eV	q(NH ₃), e
VOPc-NH ₃	0,221	2,947	0,18	0,351	0,393	0,058
VOPcF ₄ -NH ₃	0,220	2,925	0,18	0,348	0,404	0,057
VOPcF ₁₆ -NH ₃	0,223	2,967	0,18	0,355	0,450	0,063

«Взаимодействие закрытых оболочек» характерно для ионных и водородных связей, Ван-дер-ваальсовых и специфических межмолекулярных взаимодействий. В случае взаимодействия атомов кислорода и водорода во втором способе координации молекулы NH₃ значения $\rho(\mathbf{r})$ и $\nabla^2 \rho(\mathbf{r})$ находятся в диапазонах, определяющих образование водородных связей. В случае двух других критических точек в виду малого заряда $q(NH_3)$ молекулы аммиака (Таблицы 2 и 3) сложно говорить о возникновении ионной связи между соответствующими атомами. Наиболее вероятным здесь представляет межмолекулярное взаимодействие.

	В	СР меж,	ду О и	Н	В	СР меж,	ду С и	N	F	
Structure	$\rho(\mathbf{r}), e/\text{Å}^3$	$\frac{\nabla^2 \rho(\mathbf{r})}{e/\text{\AA}^5},$	$ \lambda_1 /\lambda_3$	E _{OH} , eV	$\rho(\mathbf{r}), e/\text{\AA}^3$	$ abla^2 ho(\mathbf{r}), $ $ e/Å^5 $	$ \lambda_1 /\lambda_3$	E _{CN} , eV	E_b , eV	$q(\mathbf{NH}_3), e$
VOPc-NH ₃	0,095	0,955	0,22	0,135	0,060	0,621	0,17	0,058	0,170	0,017
VOPcF ₄ -NH ₃	0,095	0,954	0,22	0,135	0,060	0,619	0,17	0,058	0,160	0,014
VOPcF ₁₆ -NH ₃	0,092	0,928	0,22	0,131	0,063	0,624	0,17	0,059	0,141	0,019

Таблица 3 – Топологические параметры функции *ρ*(**r**) в ВСР между атомами фталоцианинов ванадила и молекулы NH₃, находящейся со стороны атома кислорода

Более прочное связывание молекулы NH₃ наблюдается в случае первого способа её координации. В пользу этого свидетельствуют не только в 2-3 раза большие значения $\rho(\mathbf{r})$ и $\nabla^2 \rho(\mathbf{r})$ в соответствующей критической точке по сравнению с двумя другими. Межатомная энергия взаимодействия $E_{\rm VN}$, оцененная, как $\frac{1}{2}$ плотности потенциальной энергии, также в несколько раз больше рассчитанных аналогичным образом значений $E_{\rm OH}$ и $E_{\rm CN}$ (Таблицы 2 и 3). При этом и большими значениями в данном случае обладает энергия связи E_b , определённая по формулам (1) и (2). С увеличением числа атомов фтора, замещающих периферийные атомы водорода фталоцианинов, значения *E*_b меняются – увеличиваются, когда молекула аммиака взаимодействует непосредственно с атомом ванадия, и уменьшаются в случае её второго способа координации.

В результате проведённых квантово-химических вычислений геометрического строения и природы связи соединений углеродных нанотруб диаметром от 7 Å до 14 Å с фталоцианином и его комплексами с атомами кобальта, меди и цинка установлено, что энергия рассматриваемого взаимодействия зависит, как от размеров УНТ, так и от их хиральности, ориентации фталоцианинов на поверхности, природы атома металла.

Наиболее прочное связывание макроциклических молекул характерно для структур с атомом кобальта. Далее следуют ZnPc и CuPc, и наименее прочно связывается H₂Pc. При этом в основе данного связывания лежит π - π -взаимодействия, о чём можно судить по малым значениям энергии связи в расчёте в среднем на каждый атом фталоцианина и сумме эффективных зарядов атомов углеродных нанотруб внутри суперячейки. В целом, в рассматриваемых соединениях наблюдается смещение электронной плотности с углеродных нанотруб на фталоцианины. При этом оно является наибольшим в случае УНТ(m,m), а в соединениях с CoPc и CuPc и в случае УНТ(n,0), где n кратно трём.

С увеличением диаметра углеродных нанотруб энергия рассматриваемой связи, в целом, возрастает, однако, в случае УНТ(n,0) достигает своего максимального значения при n = 16 или 17 в зависимости от природы атома металла и ориентации фталоцианинов на поверхности углеродных нанотруб. При этом в большинстве случаев соединений с УНТ(n,0) более выгодной ориентацией является их расположение таким образом, что связи N-H или N-Me образуют угол 45° с осью углеродной нанотрубы. В случае соединений с УНТ(m,m) фталоцианины располагаются на их поверхности чаще так, что указанные связи N-H или N-Me параллельны оси УНТ. Характерно, что при малых диаметрах углеродных нанотруб (до 10,5 Å) более прочное связывание рассматриваемых макроциклических молекул возникает с УНТ типа «*armchair*». В случае более высоких значений диаметра фталоцианины связываются прочнее с УНТ типа «*zigzag*».

6. Эффект от использования кластера в достижении целей работы

Использование квантово-химического моделирования на базе оборудование ИВЦ НГУ является значимой частью всей работы, поскольку, во-первых, позволяет интерпретировать экспериментальные данные. Во-вторых, оно дает возможность осуществления направленного проведения синтеза необходимых материалов и прогнозирования ожидаемых результатов их использования. Использование многопроцессорных суперкомпьютеров с этой точки зрения является обязательным условием, поскольку позволяет проводить вычисления с высокой скоростью. Строго говоря, осуществление квантово-химических расчетов, результаты которых представлены выше, на персональных компьютерах фактически является невозможным.

7. Перечень публикаций, содержащих результаты работы

- Kuprikova N.M., Klyamer D.D., Sukhikh A.S., Krasnov P.O., Mrsic I., Basova T.V. Fluorosubstituted lead phthalocyanines: Crystal structure, spectral and sensing properties // Dyes and Pigments. 2020. V. 173. Article 107939 (Импакт-фактор: 4,018).
- 2. Klyamer D.D., Basova T.V., Krasnov P.O., Sukhikh A.S. Effect of fluorosubstitution and central metals on the molecular structure and vibrational spectra of metal phthalocyanines // Journal of Molecular Structure. 2019. V. 1189. P. 73-80 (Импакт-фактор: 2,12).
- 3. Klyamer D.D., Sukhikh A.S., Gromilov S.A., Krasnov P.O., Basova T.V. Fluorinated metal phthalocyanines: interplay between fluorination degree, films orientation, and ammonia sensing properties // Sensors. 2018. V. 18. Article 2141 (Импакт-фактор: 3,031).
- 4. Krasnov P.O., Basova T.V., Hassan A. Interaction of metal phthalocyanines with carbon zigzag and armchair nanotubes with different diameters // Applied Surface Science. 2018. V. 457. P. 235-240 (Импакт-фактор: 5,155).