Отчёт о проделанной работе с использованием оборудования ИВЦ НГУ

Тема работы:

Электронные и дырочные поляроны малого радиуса в кристаллах PbX_2 (X = F, Cl, Br): расчетное исследование.

Состав коллектива:

Чуклина Надежда Геннадьевна, м.н.с. лаб. №35.1 ИГХ СО РАН

Аннотация:

Расчеты с использованием теории функционала плотности (DFT) из первых принципов были выполнены для автолокализованного электрона (STEL) и автолокализованной дырки (STH) в кристаллах PbX₂ (X= F, Cl, Br), широко используемых в качестве исходных материалов для неорганических галогенных перовскитов (CsPbX₃) и сцинтилляторов. Предсказаны атомная, электронная структура, спиновое и зарядовое распределения и энергии образования поляронов обоих типов для орторомбического PbF₂ и STEL для кубического PbF₂. Конфигурация автолокализованной дырки была идентифицирована в спорном случае кристалла PbCl₂. Подтвердили и подробно проанализировали экспериментально предложенные конфигурации для других случаев. Показано, как из-за тонкого баланса ионной и ковалентной химической связи локализация дырок изменяется от одиночного катиона во фторидах и хлоридах до димерного аниона в бромидах. Положения энергетических уровней STEL/STH в запрещенной зоне были определены и обсуждены в связи с ролью спин-орбитальных эффектов.

Актуальность:

Определение конфигураций дефектов и динамики процесса преобразования, диффузии и распада электронных возбуждений во фторидных и фторсодержащих кристаллах даст более глубокое понимание процессов дефектообразования, а также позволит расширить область прикладного применения фторидных и фторсодержащих кристаллов.

Цели исследования:

С помощью методов квантовой химии определить равновесные конфигурации автолокализованных электронных возбуждений (STEL и STH) в кристаллах PbX_2 (X = F, Cl, Br). На основе полученных данных рассчитать значения энергии локализации и формирования дефекта в кристалле. И определить положение уровня дефекта в запрещенной зоне.

Современное состояние проблемы:

Теоретически предсказанная в 1933 г. Л. Ландау автолокализация носителей (поляроны малого радиуса) в ионных кристаллах продолжает привлекать большое внимание как фундаментальное явление [1,2]. Первое экспериментальное обнаружение автолокализованной дырки (STH) в 1955 г. было выполнено В. Кензигом [3] в галогенидах щелочных металлов (МХ). В этих материалах STH локализован в форме молекулярного иона X_2^- (известного как V_k -центр) [4]. В 1968 г. в более ковалентном AgCl наблюдали STH в форме катиона с захваченной дыркой, катиона Ag^{2+} [5]. В свою очередь, автолокализованный электрон (STEL) был впервые обнаружен экспериментально в 1993г., через шестьдесят лет после предсказания, в PbCl₂, облученном рентгеновским [6] и γ -

лучами [7]. Явление автолокализации до сих пор наблюдалось в галогенидах щелочных металлов, галогенидов щелочноземельных металлов, галогенидах перовскитов, например, KMgF₃, CsPbX₃, органо-неорганических и двумерных гибридных перовскитах, а также другие материалы.

Оптические свойства бинарных галогенидов свинца PbX₂ (X=F, Cl, Br) делают эти материалы подходящими для оптоэлектронных устройств, сцинтилляторов и детекторов излучения [8]. Свойства PbX₂ сильно зависят от наличия в этих материалах носителей. Многочисленные экспериментальные автолокализованных работы предполагают наличие STEL и STH в галогенидах свинца [9] как интерпретацию экспериментальных данных. Удивительно, но существует лишь несколько компьютерных исследований STEL/STH в галогенидах свинца. Исследование STH в β-PbF и PbF₄ [10] было проведено два десятилетия назад. Недавние разработки в области высокопроизводительных вычислений позволили исследователям по-новому взглянуть на малые поляроны в материалах на основе PbXn, как это было сделано в работах.

[1] M. I. Klinger, Soviet Physics Uspekhi, 1985, 28, 391–413.

[2] A. M. Stoneham, J. Gavartin, A. L. Shluger, A. v Kimmel, D. M. Ramo, H. M. Rønnow, G.

Aeppli and C. Renner, Journal of Physics: Condensed Matter, 2007, 19, 255208.

[3] W. Känzig, Physical Review, 1955, 99, 1890–1891.

[4] D. Schoemaker, Physical Review B, 1973, 7, 786–801.

[5] M. Höhne and M. Stasiw, Physica Status Solidi (b), 1968, 28, 247-253.

[6] S. V. Nistor, E. Goovaerts and D. Schoemaker, Physical Review B, 1993, 48, 9575–9580.

[7] T. Hirota, T. Fujita and Y. Kazumata, Japanese Journal of Applied Physics, 1993, 32, 4674–4679.

[8] V. G. Plekhanov, Progress in Materials Science, 2004, 49, 787-886.

[9] M. Itoh, H. Nakagawa, M. Kitaura, M. Fujita and D. L. Alov, Journal of Physics: Condensed Matter, 1999, 11, 3003–3011.

[10] S. E. Derenzo, M. Klintenberg and M. J. Weber, IEEE Transactions on Nuclear Science, 1999, 46, 1969–1973.

Подробное описание работы, включая используемые алгоритмы:

Моделирование полярона проводилось с помощью программного комплекса VASP. Известно, что наиболее широко используемый вычислительный подход, а именно теория функциоанала плотности (DFT) в локальном или обобщенном градиентном приближении (LDA и GGA), в некоторых случаях не может правильно описать локализацию заряда, изза присущей этим методам ошибки самодействия. Поэтому мы использовали гибридный обменно-корреляционный функционал PBE0, который корректно рассматривает как автолокализацию, так и делокализованные состояния для исследуемых систем.

Кубическая структура была смоделирована в суперъячейке $2a \times 2a \times 2a$ с 32 атомами PbF₂, в то время как расширения орторомбической суперячейки были $2a \times 4b \times 2c$ с 64 атомами PbX₂. Суперячейки с такими расширениями предотвращают взаимодействие одиночных дефектов с их периодическими изображениями, а также между двумя поляронами внутри одной суперячейки. Для всех бездефектных материалов PbX₂ здесь впервые была проведена оптимизация геометрии с точностью до 1 мэВ. Оптимизированные постоянные решетки сравнивались с экспериментальными значениями. Для систем с STEL/STH оптимизировались только положения атомов, при этом параметры суперячейки оставались фиксированными. Размеров суперячеек было достаточно для проведения расчетов с К-сеткой 1x1x1. Энергия отсечки базиса плоской волны была установлена равной 400 эВ, 262 эВ и 216 эВ для PbF2, PbCl2 и PbBr2 соответственно. STEL и STH моделировались путем добавления и удаления электрона, соответственно. в суперячейку. Дополнительный электронно-дырочный заряд компенсировался однородным фоновым зарядом. В бездефектном PbX₂ два электрона отдаются от бр-орбитали катиона Pb²⁺ на р-орбитали двух анионов X⁻, что делает соединение диамагнитным. И STEL, и STH требуют, чтобы один электрон был Поэтому общий момент неспаренным. магнитный системы фиксировался соответствующим образом. Энергия автолокализации рассчитывалась как выигрыш энергии при переходе от носителя, делокализованного по всей сверхъячейке, к носителю, локализованному на нескольких ближайших ионах. Чтобы проверить стабильность STEL и STH в заряженных суперячейках, оба дефекта также рассчитывали в одной и той же незаряженной суперячейке. В этом случае полный магнитный момент фиксировался для двух неспаренных электронов в коллинеарных магнитных расчетах. Орбитальная проекционная плотность электронов была нанесена по изоповерхностям одного уровня, что позволило провести прямое сравнение локализации полярона между разными системами.

Полученные результаты:

Наши расчеты показывают, что в PbCl₂ и PbBr₂ STEL локализован на двух катионах Pb, что ясно видно по орбитальной проекции плотности заряда (рис. le,g) и согласуется с экспериментальными данными. Мы предсказываем, что в кубическом β -PbF₂ STEL также локализуется в виде димера Pb₂³⁺ (рис. la), но с меньшей энергией локализации, чем в хлориде и бромиде (табл. l). Форма орбитальных проекций изоповерхностей димеров Pb₂³⁺ отражает связывающий характер соответствующей ковалентной σ связи 6рмолекулярных орбиталей. В свою очередь, в орторомбическом α -PbF₂ STEL имеет более сложную конфигурацию, с перераспределением электрона между тремя ближайшими катионами Pb (рис. l c), где две взаимно перпендикулярные связи Pb-Pb укорачиваются по сравнению с совершенным кристаллом. Одна связь Pb-Pb здесь структурно идентична связи для STEL в PbCl₂ и PbBr₂ и параллельна направлению [010] (рис. le,g), а другая укороченная связь параллельна направлению [201]. В α -PbF₂ других структурно стабильных STEL -конфигураций обнаружено не было.

При рассмотрении автолокализованной дырки (STH) во всех трех материалах PbX_2 исходно предполагалось, что двумя возможными конфигурациями STH являются мономер Pb^{3+} и димер галогенида X_2^- . В зависимости от конфигурации STH один неспаренный электрон на одном катионе Pb или две половины неспаренного электрона на двух катионах X. В пределах применяемого метода, автолокализованная дырка структурно стабилена только в одной из этих двух конфигураций для каждого материала, тогда как альтернативная конфигурация структурно нестабильна.

В результате моделирования мы четко различили анионную природу автолокализованной дырки в PbBr₂ и катионную природу в PbF₂ и PbCl₂ (puc.1 b,d,f,h). Проведенные расчеты показали, что STH в PbCl₂ стабилен в виде мономера Pb³⁺ в соответствии с экспериментальным исследованием, тогда как димер Cl_2^- нестабилен, что противоречит

одной из предварительных интерпретаций экспериментальных результатов. Предполагается, что легирование $PbCl_2$ бромом, по всей видимости, создаст благоприятные условия для контролируемого образования дырочных центров в виде V_k -типа (в виде димера Cl_2^-).

Для каждого дефекта была рассчитана энергия формирования дефекта (E_{Formation}) и выигрыш в энергии при автолокализации дефекта в кристалле (E_{self-trapping}).

Таблица 1 – Значения энергии формирования дефекта (E_{Formation}) и значения выигрыша в энергии при автолокализации дефекта в кристалле (E_{self-trapping}).

material	E _{Formation} + STH Pb ³⁺ -type	- <i>E_{Formation}</i> STH X ₂ ⁻ -type	$E_{Formation}^{STH+STEL ****}$	$E_{self-trapping}^{STEL}$	$E_{self-trapping}^{STH}$	
β -PbF ₂	5.16*	$5.44^{*\times}$	5.07^{***}	-0.09	-0.73	
α -PbF ₂	4.80^{**}	5.09***	4.74^{*}	-0.27	-0.66	
PbCl ₂	4.53**	4.66***	4.49^{*}	-0.43	-0.31	
PbBr ₂	$4.01^{**\times}$	3.74**	3.67*	-0.22	-0.50	

Также для каждого дефекта было определено положения энергетического уровня в запрещенной зоне

Таблица 2 – Положение энергетического уровня STEL и STH в запрещенной зоне рассматриваемого кристалла. Также приведены расчётные и экспериментальные значения ширины запрещенной зоны рассматриваемых кристаллов.

Crystal	STEL			STH			Band con aV				
	energy level, eV		composition	energy level, eV		composition		banu gap, ev			
	coll.	noncoll.	Рb 6 <i>р</i>	coll.	noncoll.	Pb 6 <i>s</i>	Хp	coll.	noncoll.	Expt.	calculated
β -PbF ₂	-1.59	-1.62	0.47	2.37	2.25	0.39	0.43	6.27	6.01	5.68 [76],	6.65 [74]
α -PbF ₂	-1.89	-1.92	0.50	2.16	2.17	0.40	0.43	6.06	5.82		6.78[74]
PbCl ₂	-2.20	-1.93	0.50	1.27	1.31	0.21	0.47	5.47	4.92	4.86 [76],	5.34 [75]
PbBr ₂	-1.81	-1.76	0.45	2.11	2.11		0.56	4.65	4.14	3.94-3.98 [76]	3.89 [75]

Иллюстрации, визуализация результатов:

Рисунок 1 - Визуализация STEL (а, в, д, ж) и STH (б, г, е, з) через орбитальную проекционную плотность заряда для β -PbF₂ (а, б), α -PbF₂ (в, г), PbCl₂ (д, е) и PbBr₂ (ж, з). Отрицательный/положительный заряд электрона показан синей/красной изоповерхностью.

Эффект от использования кластера в достижении целей работы:

Использование гибридного обменно-корреляционного функционала PBE0 является ресурсозатратным, как по количеству необходимой памяти, так и по времени расчета. Поэтому использование кластера является необходимым для успешного достижения целей работы.

Перечень публикаций, содержащих результаты работы:

- Mastrikov, Y.A., Chuklina, N.G., Sokolov, M.N., Popov, A.I., Gryaznov, D.V., Kotomin, E.A. and Maier, J. Small radius electron and hole polarons in Pb X 2 (X= F, Cl, Br) crystals: a computational study // Journal of Materials Chemistry C – 2022 – V.9(46) -P.16536-16544. DOI: 10.1039/D1TC01731D
- Диссертационная работа «Исследование механизмов миграции автолокализованной дырки в кристаллах щелочно-земельных фторидов методом молекулярной динамики» - 2021г. – Р. 91.