ОТЧЕТ О ПРОДЕЛАННОЙ РАБОТЕ С ИСПОЛЬЗОВАНИЕМ ОБОРУДОВАНИЯ ИВЦ НГУ

1. Аннотация

Проведены первопринципные расчеты в рамках теории функционала плотности стабильности боратов бария в тройной системы $BaO-B_2O_3-BaF_2$ при давлениях до 10 ГПа. Согласно проведенным расчетам, в подсистеме $BaO-B_2O_3$ фазы $Ba_3B_2O_6$, BaB_2O_4 и BaB_4O_7 предположительно являются стабильными во всем диапазоне давлений до 10 ГПа, тогда как другие известные при атмосферном давлении бораты $Ba_5B_4O_{11}$, $Ba_2B_6O_{11}$ и BaB_8O_{13} распадаются при давлении выше 7.1, 0.6 и 2 ГПа соответственно. Предсказаны две новые полиморфные модификации соединения BaB_2O_4 при высоких давлениях, BaB_2O_4 - $Pna2_1$ и BaB_2O_4 - $Pa\overline{3}$, стабильные выше 1.0 и 6.1 ГПа соответственно. В подсистеме BaF_2 - $Ba_3B_2O_6$ твердый раствор $Ba_7(BO_3)_{4-x}F_{2+3x}$ предполагается устойчивым в рассматриваемом диапазоне давлений, а $Ba_5(BO_3)_3$ -F распадается на $Ba_3B_2O_6$ и $Ba_7(BO_3)_{4-x}F_{2+3x}$ при давлениях выше 3–5 ГПа. Показано, что энтальпия $Ba_7(BO_3)_{4-x}F_{2+3x}$ сильно зависит от распределения в структуре групп $[(BO_3)_F]^4$ и $[F_4]^4$. Полученные результаты рассматриваем как необходимую основу для экспериментального исследования, направленного на получение боратов бария при давлениях до 10 ГПа и изучение их структуры и свойств.

2. Тема работы

Первопринципное исследование структурных превращений боратов бария под давлением в системе BaO–B₂O₃–BaF₂ в интервале давлений 0–10 ГПа.

3. Состав коллектива

- 1. Литасов Константин Дмитриевич; Новосибирский Государственный Университет, в.н.с.
- 2. Гаврюшкин Павел Николаевич; Новосибирский Государственный Университет, Институт Геологии и Минералогии им. В.С. Соболева СО РАН; доцент, с.н.с.
- 3. Беккер Татьяна Борисовна; Новосибирский Государственный Университет, Институт Геологии и Минералогии им. В.С. Соболева СО РАН; в.н.с.
- 4. Сагатов Нурсултан; Институт Геологии и Минералогии им. В.С. Соболева СО РАН, н.с.
- 5. Бехтенова Алтына Ербаяновна; Новосибирский Государственный Университет, Институт Геологии и Минералогии им. В.С. Соболева СО РАН; н.с.

- Сагатова Динара; Институт Геологии и Минералогии им. В.С. Соболева СО РАН; м.н.с.
- 7. Банаев Максим Валерьевич; Новосибирский Государственный Университет; студент

4. Научное содержание работы

4.1. Постановка задачи

Исследовать стабильность и фазовые переходы промежуточных соединений в системе BaO–B₂O₃–BaF₂ в интервале давлений 0–10 ГПа.

4.2. Современное состояние проблемы

В отличие от высокотемпературной кристаллохимии боратов, их кристаллохимия при высоких давлениях практически не изучена. В настоящее время систематическое экспериментальное исследование боратов, синтезированных при высоких давлениях и температурах, проведено австрийской группой под руководством Х. Хупперца с использованием многопуансонного апарата при давлениях до 12.3 ГПа. Эта группа открыла более 30 новых борсодержащих соединений с принципиально новыми типами структур. Некоторые из синтезированных соединений и условия их синтеза следующие: β-BaB₄O₇, 7 GPa, 1100 °C (Knyrim et al., 2009); Cd(NH₃)₂[B₃O₅(NH₃)]₂, 4.7 GPa, 800 °C (Sohr et al., 2015); γ-NiB₄O₇, 5 GPa, 900 °C (Schmitt et al., 2017a); (NH₄)YB₈O₁₄, 12.8 GPa, 1300 °C (Schmitt et al., 2017c); Mo₂B₄O₉, 12.3 GPa, 1300 °C (Schmitt et al., 2017b) M₅B₁₂O₂₅(OH) (M = In, Ga), 12 GPa, 1450 °C (Vitzthum et al., 2018); $Pr_5(BO_4)_{3-x}(BO_3)_x(F,OH)_{2.67}O_{0.28}$ ($x \approx 1.6$), 11.5 GPa, 1300 °C (Glätzle et al., 2019). Для ряда соединений экспериментально изучены комбинационного рассеяния, спектры инфракрасные люминесцентные, И фотокаталитическая активность. Известны также отдельные экспериментальные и теоретические работы по боратным фазам высокого давления (Dong et al., 2018; Lin et al., 1992; Lu et al., 1988).

4.3. Подробное описание работы, включая используемые алгоритмы

Все расчеты выполнены в рамках теории функционала плотности (DFT), реализованной в программном пакете VASP. Обменно-корреляционное взаимодействие учитывалось в приближении обобщенного градиента в виде функционала Пердью-Берка-Эрнзергофа (PBE) (Perdew et al., 1996). Электроны атомного остова были аппроксимированы с использованием псевдопотенциалов проектора дополненной волны (PAW), а валентные электроны были представлены с помощью базиса плоских волн с энергией отсечки 800 эВ. Валентные конфигурации были выбраны как Ba $(5s^25p^66s^2)$, B $(2s^22p^1)$, O $(2s^22p^4)$ и F

 $(2s^22p^5)$. Зона Бриллюэна была отобрана с помощью Г-центрированной сетки Монкхорста-Пака (Monkhorst and Pack, 1976) с шагом k-точек 0.3 Å⁻¹.

В случае системы BaO–B₂O₃ экспериментально известные структуры BaO-*Fm3m* (Gerlach, 1922), BaO-*P6*₃/*mmc* (Weir et al., 1986), B₂O₃-*P*3₁21 (Effenberger et al., 2001), B₂O₃-*Cmc*2₁ (Prewitt, Shannon, 1968), Ba₃B₂O₆-*Pbam* (Bekker et al., 2018), Ba₅B₄O₁₁-*P*2₁2₁2₁ (Furmanova et al., 2006), BaB2O4-*R*-3*c* (α -BaB₂O₄) (Mighell et al., 1966).), BaB₂O₄-*R*3*c* (β -BaB₂O₄) (Pan et al., 2007), Ba₂B₆O₁₁-*P*2₁/c (Liu et al., 2015), BaB₄O₇-*P*2₁/c (α -BaB₄O₇) (Block and Perloff, 1965) , BaB₄O₇-*P*_{mnb} (β -BaB₄O₇) (Knyrim et al., 2009), Ba₂B₁₀O₁₇-*P*-1 (Liu et al., 2014) и BaB₈O₁₃-*P*4₁22 (Krogh-Moe, Ihara, 1969). Поскольку Ba₃B₂O₆-*Pbam* содержит неупорядоченные группы [BO₃]³⁻ с частично занятыми позициями бора и кислорода, мы построили упорядоченную структурную модель Ba₃B₂O₆. *Pbam* для выполнения DFT расчетов. Кроме того, для стехиометрии Ba₃B₂O₆, BaB₂O₄ и BaB₄O₇ мы рассмотрели Ca₃B₂O₆-*Pa*-3 (Marezio et al., 1969b) и CaB₄O₇-*Pmn*2₁ (Huppertz, 2003), в которых атомы кальция заменены атомами бария.

4.4. Полученные результаты

<u>Система ВаО–В₂О3</u>

Построенные выпуклые оболочки при различных давлениях и диаграмма состав–давление системы $BaO-B_2O_3$ показаны на рис. 1. При 0 ГПа все рассмотренные соединения, кроме $Ba_2B_{10}O_{17}$, стабильны. Это может быть связано с тем, что фаза $Ba_2B_{10}O_{17}$ -*P*-1, описанная в работе (Liu et al., 2014) является стабильной только при высокой температуре. Низкотемпературной фазой, вероятно, является $Ba_2B_{10}O_{17}$, о которой сообщается в работе (Stone-Sundberg et al., 2001), однако ее структурные данные отсутствуют. Рассчитанные параметры элементарной ячейки и равновесные объемы для рассмотренных структур находятся в хорошем согласии с имеющимися экспериментальными и теоретическими значениями.

Из полученных выпуклых оболочек видно, что $Ba_3B_2O_6$, BaB_2O_4 и BaB_4O_7 стабильны во всем диапазоне давлений, а $Ba_5B_4O_{11}$, $Ba_2B_6O_{11}$ и BaB_8O_{13} при сжатии распадаются на два соседних соединения.

Рисунок 1. Выпуклые оболочки системы ВаО-В₂О₃ в интервале давлений 0–10 ГПа и 0 К. Синие квадраты обозначают стабильные структуры, красные треугольники – метастабильные структуры.

Было обнаружено, что BaB₂O₄ претерпевает два фазовых перехода (рис. 2). При давлении выше 1 ГПа фаза атмосферного давления BaB₂O₄-R3c превращается в BaB₂O₄- $Pna2_1$, которая является стабильной до 6.1 ГПа. ВаВ₂О₄- $Pna2_1$ — это новая структура высокого давления, полученная путем оптимизации структуры CaB₂O₄-Pna2₁, в которой атомы Са заменены атомами Ва. Хотя обе структуры, BaB₂O₄-Pna2₁ и CaB₂O₄-Pna2₁, имеют одну и ту же пространственную группу, они не изоструктурны. Обе структуры состоят из связанных BO₃-треугольников и BO₄-тетраэдров. Однако в BaB₂O₄-Pna2₁, в отличие от CaB₂O₄-Pna2₁, один из мостиковых кислородов между BO₃-треугольником и ВО₄-тетраэдром становится концевым, что приводит к образованию двух отдельных ВО₃треугольников. При давлениях выше 6.1 ГПа ВаВ₂О₄-*Pna*2₁ переходит в кубическую фазу с пространственной группой *Pa*-3, которая изоструктурна фазе высокого давления CaB₂O₄-Pa-3 (Marezio et al., 1969b). Таким образом, в структуре BaB₂O₄ атмосферного давления основными структурными элементами являются изолированные метаборные кольца [B₃O₆], образованные тремя сцепленными треугольниками [BO₃]. Расчеты из первых принципов показывают, что при давлении выше 1 ГПа в структуре BaB₂O₄-Pna21 вместо изолированных колец [B₃O₆] возникают частично связанные треугольники [BO₃] и

тетраэдры [BO₄]. Фаза BaB₂O₄-*Pa*-3 стабильна выше 6 ГПа и имеет каркасную структуру, состоящую только из связанных тетраэдров [BO₄].

Для BaB₄O₇ существует два фазовых перехода: первый переход из фазы атмосферного давления BaB₄O₇-*P*2₁/*c* в фазу высокого давления BaB₄O₇-*Pmnb* происходит при 1.8 ГПа, а второй переход из BaB₄O₇-*Pmnb* во вторую фазу высокого давления BaB₄O₇-*Pmn*2₁ происходит при 7.5 ГПа (рис. 2). Этот результат хорошо согласуется с предыдущими исследованиями BaB₄O₇ при высоких давлениях (Knyrim et al., 2009), где фазовые переходы $P2_1/c \rightarrow Pmnb$ и $Pmnb \rightarrow Pmn2_1$ были зафиксированы при 1.5 и 7.5 ГПа соответственно.

Рисунок 2. Зависимости энтальпии от давления структур (a) $Ba_3B_2O_6$, (b) BaB_2O_4 , and (c) BaB_4O_7 .

Фаза Ba₅B₄O₁₁ со структурой $P2_12_12_1$ стабильна ниже 7.1 ГПа. Выше этого давления энтальпия Ba₅B₄O₁₁- $P2_12_12_1$ становится выше, чем у механической смеси 1.5Ba₃B₂O₆ + 0.5BaB₂O₄. Это означает, что выше 7.1 ГПа Ba₅B₄O₁₁- $P2_12_12_1$ распадается на 1.5Ba₃B₂O₆ + 0.5BaB₂O₄ (рис. 3). Фаза атмосферного давления Ba₂B₆O₁₁- $P2_1/c$ стабильна до 0.9 ГПа, а выше этого давления распадается на BaB₂O₄ + BaB₄O₇ (рис. 3). BaB₈O₁₃ в виде структуры $P4_122$ стабилен до 2 ГПа, а выше этого давления распадается на BaB₄O₇ + 2B₂O₃ (рис. 3).

Рисунок 3. Зависимости энтальпий структур (a) Ba₅B₄O₁₁, (b) Ba₂B₆O₁₁, и (c) BaB₈O₁₃ относительно механической смеси.

Обобщая вышеизложенные результаты, мы получили фазовую диаграмму составдавление системы BaO–B₂O₃ при давлениях до 10 ГПа (рис. 4).

Рисунок 4. Предсказанная диаграмма состав-давление для системы BaO-B₂O₃.

<u>Система BaF₂-Ba₃(BO₃)₂</u>

Согласно полученным результатам, при 0 ГПа фаза $Ba_5(BO_3)_3F$ является стабильной, а твердый раствор $Ba_7(BO_3)_{4-x}F_{2+3x}$ (x = 0, 0.25, 0.5, 1) – метастабильным (рис. 5). Метастабильность фазы $Ba_7(BO_3)_{4-x}F_{2+3x}$ при 0 ГПа противоречит экспериментальным результатам и может быть связана с распределением тетраэдрических групп $[(BO_3)F]^{4-}$ и $[F_4]^{4-}$ в моделируемой структуре. Установлено, что энтальпия рассматриваемых структур $Ba_7(BO_3)_{4-x}F_{2+3x}$ сильно зависит от распределения групп $[(BO_3)F]^{4-}$ и $[F_4]^{4-}$. Например, разница энтальпий между двумя модельными структурами фазы Ba_2BO_3F (x = 0.5) с различным распределением $[(BO_3)F]^{4-}$ и $[F_4]^{4-}$ составляет около ~0.3 эB/ф.ед. В наших расчетах мы были ограничены размером ячейки и периодическими граничными условиями, поэтому считаем, что рассмотренное распределение групп $[(BO_3)F]^{4-}$ и $[F_4]^{4-}$ недостаточно для корректного моделирования реальной структуры. Более крупная ячейка и, соответственно, больше возможностей для распределения $[(BO_3)F]^{4-}$ и $[F_4]^{4-}$ могут потребоваться для построения корректной структуры для дальнейших вычислений.

Несмотря на это, из полученных результатов можно сделать вывод, что давление благоприятно влияет на стабильность твердого раствора $Ba_7(BO_3)_{4-x}F_{2+3x}$ по отношению к механической смеси соединений BaF_2 и $Ba_5(BO_3)_3F$ (рис. 5). Учитывая, что реальная энтальпия $Ba_7(BO_3)_{4-x}F_{2+3x}$ должна быть ниже расчетной, $Ba_7(BO_3)_{4-x}F_{2+3x}$ предполагается стабильным в диапазоне давлений 0–10 ГПа, предполагается, что $Ba_5(BO_3)_3F$ распадается на BaF_2 и $Ba_7(BO_3)_{4-x}F_{2+3x}$ при давлениях выше 3–5 ГПа.

Рисунок 5. Выпуклые оболочки системы BaF₂–Ba₃(BO₃)₂ в диапазоне давлений 0–10 ГПа и 0 К. Синие квадраты обозначают стабильные структуры, красные треугольники – метастабильные структуры.

5. Эффект от использования кластера в достижении целей работы

Кластер ИВЦ НГУ является основным кластером нашей группы, без использования ресурсов кластера достижение большинства результатов было бы технически невозможным.

6. Перечень публикаций

1. Sagatov N. E., Bekker T. B., Podborodnikov I. V., Litasov K. D. (2021). First-Principles investigation of Pressure-Induced structural transformations of barium borates in the BaO-B₂O₃-BaF₂ system in the range of 0–10 GPa. *Computational Materials Science*, 199, 110735.