- **Тема работы:** Высокоточные квантовохимические расчеты кинетики и механизма первичных процессов термического разложения богатых азотом высокоэнергетических соединений
- Состав коллектива: Горн Маргарита Викторовна, выпускник аспирантуры ФФ НГУ 2022 года, инженер лаборатории структуры и молекулярных свойств функциональных систем ФФ НГУ, м.н.с. лаборатории механизмов реакций ИХКГ СО РАН. Киселев Виталий Георгиевич, к.ф.-м.н., с.н.с. лаборатории структуры и молекулярных свойств функциональных систем ФФ НГУ, и.о. зав. кафедры химической и биологической физики ФФ НГУ, с.н.с. лаборатории механизмов реакций ИХКГ СО РАН.

• Грант:

РФФИ 20-33-90176 «Исследование термической стабильности гетероциклических высокоэнергетических соединений с помощью современных высокоточных квантовохимических методов», руководитель – В.Г. Киселев, НГУ

Постановка задачи. Целью данной части работы является установление механизма термического разложения 5-амино-3,4—динитропиразола методами квантовой химии и термического анализа.

Современное состояние проблемы.

В настоящий момент активно ведутся как экспериментальные, так и теоретические этой области. Глобальная состоит задача В высокоэнергетических соединений, которые были бы при этом достаточно стабильны, для чего необходимо знать механизмы процессов термолиза. Исследовать термодинамические свойства соединений и константы скоростей разложения экспериментально зачастую очень сложно, в силу высокой чувствительности соединений и скорости протекающих процессов, а также в силу невозможности разделить в эксперименте химические и физические процессы. При этом константы скорости зависят от величин активационных барьеров экспоненциально, соответственно, необходимо производить высокоточные квантовохимические расчёты.

Подробное описание работы.

Богатые азотом гетероциклические соединения представляют собой экологически чистые высокоэнергетические соединения, которые могут использоваться в качестве компонентов топлив или как быстрые источники большого количества газа, например, в автомобильных подушках безопасности. Для соединений, исследованных в данной работе, в литературе нет детального понимания механизмов их разложения.

Нами был установлен детальный механизм разложения 5-аминодинитропиразола, рассчитаны активационные барьеры и константы скоростей первичных реакций разложения, при помощи расчетов объяснена автокаталитическая природа разложения.

Для оптимизации геометрии исследуемых соединений и расчета колебательных частот в стационарных точках поверхности потенциальной энергии (ППЭ) в данной работе использовалась теория функционала плотности в варианте M06-2X/6-311++G(2df,p) [1]. Далее для оптимизированной на предыдущем шаге геометрии электронная энергия рассчитывалась методом CCSD(T)-F12/VDZ-F12 [2]. Для некоторых реакций в димерах был использован метод DLPNO-CCSD(T)/aug-cc-pVQZ [3]. DFT-расчеты в данной работе

проводились с использованием пакета квантовохимических программ Gaussian 09 и Gaussian 16 [4], расчеты методом CCSD(T)-F12 проводились при помощи пакета программ MOLPRO 2010 [5], расчеты методом DLPNO-CCSD(T) проводились с использованием пакета ORCA 4.2 [6]. Расчеты частично проводились на восьмипроцессорных Linux станциях в ИХКГ СО РАН и в большей степени на кластере Информационновычислительного центра НГУ.

- [1] Y. Zhao, D.G. Truhlar. Theor. Chem. Acc. 2008, 120, 215.
- [2] J.C. Barthelat, M. Pelissier, P. Durand. Phys. Rev. A 1980, 21, 1773.
- [3] C. Riplinger, B. Sandhoefer, A. Hansen, F. Neese, J. Chem. Phys. 139, 134101, 2013.
- [4] G.W.T. M. J. Frisch, H. B. Schlegel, G. E. Scuseria et.al. Gaussian 09, Revision E.01. Gaussian, Inc., Wallingford CT, 2009.
- [4] P.J.K. H.-J. Werner, G. Knizia et.al. MOLPRO, a package of ab initio programs, Cardiff, UK, 2012.
- [6] Frank Neese, Frank Wennmohs, Ute Becker, and Christoph Riplinger, "The ORCA quantum chemistry program package", J. Chem. Phys. 152, 224108 (2020).

Полученные результаты.

Исследование было начато с первичных реакций термолиза 5-амино-3,4-динитропиразола (5-АДП). Были рассмотрены различные таутомерные формы, реакции их взаимного превращения (в т.ч. в димерах) и реакции их разложения. Таутомеры 1 и 4 оказались в быстром равновесии за счет реакций переноса водорода в димерах (Рисунок 1). Реакции разложения, ранее предложенные в литературе, оказались невыгодны (Рисунок 2).

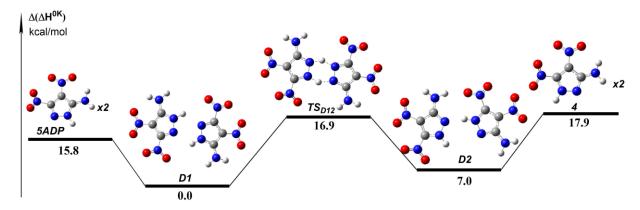


Рисунок 1. Стационарные точки на ППЭ, соответствующие реакциям взаимного превращения таутомерных форм 5-АДП в димерах. Расчеты проведены методом DLPNO-CCSD(T)/aug-cc-pVQZ//M06-2X/6-311++G(2df,p). Относительные термодинамические потенциалы отсчитываются от соответствующих величин для димера $\mathbf{D1}$. Все значения в ккал/моль.

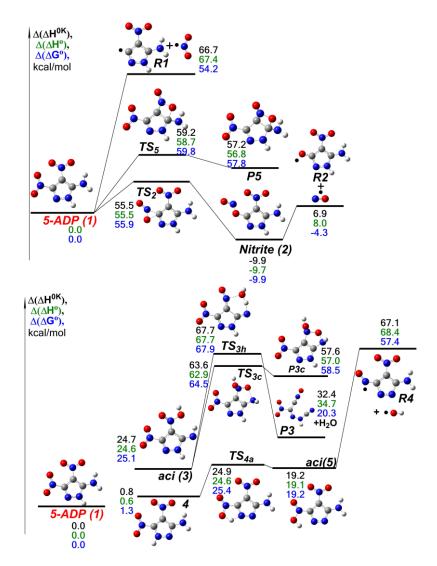


Рисунок 2. Стационарные точки на ППЭ, соответствующие стандартным реакциям разложения 5-АДП (1): разрыв связи C-NO2, нитро-нитритная перегруппировка, внутримолекулярное окисление, переносы водорода, реакция рециклизации. Расчеты проведены методом CCSD(T)-F12b/VDZ-F12//M06-2X/6-311++G(2df,p) Относительные термодинамические потенциалы отсчитываются от соответствующих величин для 1. Все значения в ккал/моль.

Нам удалось обнаружить новые каналы разложения (Рисунок 3), которые начинаются с [1,2]-сигматропного сдвига водорода, мономолекулярного или протекающего в димерах (TSD₁₂, Рисунок 2) с образованием 5-амино-3,4-динитро-2H-пиразола **4**. Далее происходит еще один [2,3]-сигматропный сдвиг водорода (TS6, Рисунок 3, отмечено синим), приводящий к образованию 5-амино-3,4-динитро-3H-пиразола **6**, который далее может разлагаться несколькими способами с образованием •R7 + •NO₂. Лимитирующей стадией процесса является второй перенос водорода, и его эффективная энтальпия активации составляет 52 ккал/моль (Рисунок 3), что примерно на 3.5 ккал/моль ниже чем барьер нитро-нитритной перегруппировки.

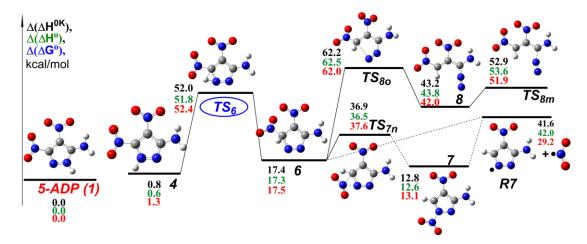


Рисунок 3. Стационарные точки на ППЭ, соответствующие наиболее выгодному каналу термического разложения 5-АДП (1). Переходное состояние (TS6), соответствующее лимитирующей стадии разложения, помечено синим цветом. Расчеты проведены методом CCSD(T)-F12b/VDZ-F12//M06-2X/6-311++G(2df,p). Относительные термодинамические потенциалы отсчитываются от соответствующих величин для 1. Все значения в ккал/моль.

Рисунок 4. Кинетическая схема доминирующего канала разложения 5-АДП (1): последовательные переносы водорода через интермедиат 4, с последующим одностадийным (отрыв радикала \bullet NO₂, k_{7r}) или двухстадийным (перенос нитрогруппы, k_{7n} , и отрыв \bullet NO₂, k_{7m}) разложением интермедиата 6. Лимитирующая стадия отмечена синим.

Кинетическая схема первичных реакций разложения 5-АДП представлена на рисунке 4. Таким образом, эффективный процесс $1 \rightarrow \bullet R7 + \bullet NO_2$ является наиболее выгодным первичным каналом разложения 5-АДП с аррениусовскими параметрами Ea=52.6 ккал/моль и lg A = 12.9.

Поскольку экспериментально наблюдался сильно автокаталитический характер разложения 5-АДП, далее были рассмотрены вторичные реакции разложения. Наиболее важным расчетным результатом для вторичных реакций является тот факт, что реакции присоединения первичного радикального продукта •R7 к 5-АДП являются наиболее доступными из рассмотренных. Как видно из рисунка 5, барьер этого процесса составляет ~ 12 ккал/моль и легко доступен при комнатной температуре, кроме того, образование конечных продуктов сильно экзотермично. Радикальный интермедиат •D7, образующийся в результате присоединения •R7 к 5-АДП, эффективно элиминирует радикал •NO2 (активационный барьер ~ 2 ккал/моль, рисунок 5). Мы предполагаем, что подобные реакции могут отвечать за автокаталитическую природу разложения.

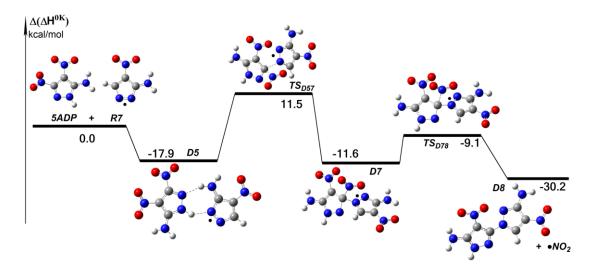


Рисунок 5. Стационарные точки на ППЭ, соответствующие вторичным реакциям 5-АДП (1) с •R7. Расчеты проведены методом DLPNO-CCSD(T)/aug-cc-pVQZ//M06-2X/6-311++G(2df,p). Относительные термодинамические потенциалы отсчитываются от соответствующих величин для радикальной асимптоты 1+•R7. Все значения в ккал/моль.

По результатам этой работы была опубликована статья. Эти данные и материалы еще двух статей, отчеты по которым уже были предоставлены, вошли в выпускную квалификационную работу аспиранта. Все статьи указаны в списке публикаций. В дальнейшем с использованием этих результатов планируется защита кандидатской диссертации.

Использование кластера: все расчеты методами CCSD(T)-F12/vdz-f12 и DLPNO-CCSD(T) проведены на кластере с использованием пакетов MOLPRO 2010.1 и ORCA 4.2. Эти расчеты играют ключевую роль в работе.

Публикации:

- N.V. Muravyev, M.V. Gorn, I.N. Melnikov, K.S. Monogarov, et. al., Autocatalytic Decomposition of Energetic Materials: Interplay of Theory and Thermal Analysis in the Study of 5-Amino-3,4-Dinitropyrazole Thermolysis. *Phys. Chem. Chem. Phys.* 2022, DOI: 10.1039/D1CP04663B
- 2. **M.V. Gorn**, N.P. Gritsan, C.F. Goldsmith, V.G. Kiselev, Thermal Stability of Bis-Tetrazole and Bis-Triazole Derivatives with Long Catenated Nitrogen Chains: Quantitative Insights from High-Level Quantum Chemical Calculations. *J. Phys. Chem. A* **2020**, *124*, 7665–7677. DOI: 10.1021/acs.jpca.0c04985.
- M.V. Gorn, K.A. Monogarov, I.L. Dalinger, I.N. Melnikov, V.G. Kiselev, N.V. Muravyev, Pressure DSC for energetic materials. Part 2. Switching between evaporation and thermal decomposition of 3, 5-dinitropyrazole. *Thermochim. Acta* 2020, 690, 178697. DOI: 10.1016/j.tca.2020.178697