- Тема работы: Термическая стабильность бициклических производных тетразола и триазола с длинными азотными цепочками в структуре по данным количественных высокоуровневых квантовохимических расчетов
- Состав коллектива: Горн Маргарита Викторовна, аспирант 3 года ФФ НГУ, лаборантисследователь лаборатории структуры и молекулярных свойств функциональных систем ФФ НГУ, м.н.с. лаборатории механизмов реакций ИХКГ СО РАН.
 Киселев Виталий Георгиевич, к.ф.-м.н., с.н.с. лаборатории структуры и молекулярных свойств функциональных систем ФФ НГУ, доцент кафедры химической и биологической физики ФФ НГУ, с.н.с. лаборатории механизмов реакций ИХКГ СО РАН.
 Грицан Нина Павловна, д.х.н., проф., в.н.с. лаборатории структуры и молекулярных свойств функциональных систем ФФ НГУ, зав. лабораторией механизмов реакций

• **Грант:** РНФ 16-13-10155П «Высокоточные квантовые расчеты и компьютерное моделирование свойств молекулярных магнитных и энергетических материалов», руководитель – Грицан Н.П.

• Научное содержание работы:

ИХКГ СО РАН.

Постановка задачи. С помощью высокоточных квантовохимических методов установить механизмы разложения бис-производных тетразола, рассчитать активационные барьеры и константы скоростей всех возможных первичных каналов их разложения.

Современное состояние проблемы.

Одно из важных направлений синтеза современных экологичных высокоэнергетических соединений – создание молекул с возможно более длинными непрерывными цепочками азота. (*J Am Chem Soc* 2010, 132, 12172-12173, Inorganic Chemistry 2011, 50, 2732-2734, New J Chem 2012, 36, 2447-2450, Angew. Chem.-Int. Edit. 2013, 52, 4875-4877, Angew. Chem.-Int. Edit. 2013, 52, 8792-8794, J. Org. Chem., 2019, 84, 10629-10634, J. Mol. Mod. 2019, 25, 345.) На данный момент синтезированы гетероциклические соеднения с цепочками азота из восьми (N₈) и десяти (N₁₀) атомов азота, а соединение с N₁₁ было получено в виде катиона энергетической соли.

На схеме 1 представлены существующие на данный момент соединения (кроме 2с). Литературные данные о термическом разложении этих соединений очень ограничены. Исследовать эти соединения экспериментально затруднительно ввиду их крайне высокой чувствительности. (*Inorganic Chemistry 2011, 50, 2732-2734., Dalton Trans. 2012, 41, 9451-9459*). Помимо этого мы рассмотрели и соединения с другим соединением гетероциклических фрагментов, а именно 5,5-бистетразолы, а также различные мостики между этими фрагментами – азо, гидразин- и азокси-.

На схеме 2 представлены 1,1'- и 5,5'-производные тетразола с гидразо- и азоксимостиками, изученные в данной работе. Кинетика и механизм разложения всех этих соединений в литературе изучены слабо. Экспериментальных данных о разложении соединений практически нет, поэтому квантовохимические расчеты являются важным инструментом для их исследования. Теоретические исследования, проведенные в литературе, не предлагают детальных механизмов разложения и выполнены простыми методами теории функционала плотности (B3LYP). (*Journal of Molecular Modeling* 2015, 21., J. Phys. Org. Chem. 2017, 30., J Comput Chem 2011, 32, 2298-2312., Int J Quantum Chem 2019, 119, 16)

• Подробное описание работы и основные результаты.

Первоначально мы рассчитали энтальпии образования исследованных соединений в газовой фазе. Был использован высокоточный метод W1-F12 для расчета энергий атомизации. В таблице представлены результаты расчетов в сравнении с доступными литературными данными.

Таблица 1. Газофазные энтальпии образования при 298 К ($\Delta_f H_{gas}^0$) соединений **1** – **8** (Схемы 1 и 2) рассчитанные многоуровневым методом W1-F12 с использованием подхода энергий атомизации и энтальпий реакции, рассчитанных методом DLPNO-CCSD(T)/aVQZ. Все значения приведены в ккал моль⁻¹.

$\Delta_f H_{gas}^0,$	1	2a	2b	2c	3	4	5	6	7	8
ккал моль										
Данная работа	223.3ª	263.6ª	239.0ª	296.8 ^b	226.1ª	282.6ª	246.2ª	265.2ª	197.4°	214.6 ^d
Литературные		260.5^{f}								
данные	230.0 ^e	270.5 ^g	226.6 ⁱ	283.5 ^h	$\begin{array}{c} 226.8^{\mathrm{f}} \\ 226.7^{\mathrm{h}} \end{array}$	_	236.3 ^h	235.3 ^h	187.4 ^f 179.4 ^h	184.4 ^h
		256.0 ^h								
		253.8 ⁱ								

^a W1-F12 энергии атомизации. ^bЭнергия атомизации **4b** рассчитана методом W1-F12, разница энтальпий **4a** и **4b** методом DLPNO-CCSD(T). ^cЭнергия атомизации **5** рассчитана методом W1-F12, разница энтальпий **5** и **7** методом DLPNO-CCSD(T). ^dЭнергия атомизации **6** рассчитана методом W1-F12, разница энтальпий **6** и **8** методом DLPNO-CCSD(T). ^ePacчет энтальпий реакций методом B3LYP совместно с изодесмическими реакциями (*J Am Chem Soc* **2010**, *132*, 12172-12173). ^fМногоуровневая методика G4MP2 совместно с изодесмическими реакциями (*J. Mol. Graph.* **2017**, *72*, 220-228). ^g Многоуровневая методика ссCA-S4 подход энергий атомизации (*Int J Quantum Chem* **2019**, *119*, 16). ^h Расчет энтальпий реакций методом B3LYP совместно с изодесмическими реакциями (*J Comput Chem* **2011**, *32*, 2298-2312). ⁱ B3LYP энергии атомизации с эмпирическими инкрементами (*J. Phys. Org. Chem.* **2017**, *30*).

Из таблицы 1 видно, что все соединения обладают очень высокими энтальпиями образования, что типично для гетероциклических энергетических соединений. 5,5'-производные заметно менее энергетичны, чем 1,1'-аналоги (**2a** и **3**; **5** и **7**; **6** и **8**), и разница в энтальпиях образования для этих пар находится в диапазоне 40-50 ккал моль⁻¹. В соединениях **2a**, **5** и **6** гетероциклы соединены мостиком через связи N-N, а в их аналогах **3**, **7** и **8** - через связи C-N. Как и ожидалось, разница энтальпий количественно совпадает с

разницей типичных энергий связей C-N и N-N (~ 40 ккал моль⁻¹). Как видно из таблицы 1, значения G4MP2 достаточно хорошо согласуются со своими аналогами W1-F12 для **2a** и **3**, в то время как расхождение очень заметно в случае **7**. Таблица 1 также показывает, что литературные значения энтальпий образования **2a** заметно различаются. Даже относительно высокий уровень теории ccCA-S4 завышает значения на ~7 ккал моль⁻¹. Поэтому неудивительно, что некоторые энтальпии образования, рассчитанные фукционалами DFT, еще более занижены (до 30 ккал моль⁻¹ в случае **8**).

Для исследования механизма разложения всех соединений были проведены оптимизации геометрии реагентов, переходных состояний и продуктов методом теории функционала плотности M06-2X, а для уточнения энергии стационарных точек на ППЭ был использован высокоточный явно коррелированный метод CCSD(T)-F12. Мы начали с рассмотрения цистранс изомеров 1,1'-азобистриазола и его конформеров (1, Схема 1). Конформеры трансизомера являются термодинамически выгоднее цис-изомера более чем на 10 ккал моль⁻¹. Далее для всех соединений мы будем обсуждать только наиболее выгодные конформеры и каналы их разложения.

Рисунок 1. Относительные энтальпии при 0 К в газовой фазе (Δ (Δ H^{0K})) для наиболее выгодных каналов радикального разложения 1,1'-азобистриазола **1**. Оптимизация геометрии и расчёт энергии нулевых колебаний проведены методом M06-2X/6-311++G(2df,p), электронные энергии рассчитаны методом CCSD(T)-F12b/VDZ-F12. Относительные термодинамические потенциалы отсчитываются от соответствующих величин для **1**. Все значения в ккал/моль.

Далее мы рассмотрели радикальные каналы разложения, однако они оказались термодинамически невыгодны (>50 ккал моль⁻¹, рис.1). По аналогии с тетразолом и триазолом, мы рассмотрели реакции раскрытия кольца, наиболее выгодным каналом является раскрытие кольца с образованием диазо-интермедиата **1-I1** и дальнейшим отрывом N2 с образованием **1-P1**. (Рис.2)

Рисунок 2. Относительные энтальпии при 0 К в газовой фазе ($\Delta(\Delta H^{0K})$) для наиболее выгодных каналов молекулярного разложения 1,1'-азобистриазола **1**. Оптимизация геометрии и расчёт энергии нулевых колебаний проведены методом M06-2X/6-311++G(2df,p), электронные энергии рассчитаны методом CCSD(T)-F12b/VDZ-F12. Относительные термодинамические потенциалы отсчитываются от соответствующих величин для **1**. Все значения в ккал/моль.

Поскольку реакция превращения интермедиата в начальное соединение быстрее, чем реакция его дальнейшего разложения, эффективная константа разложения имеет вид $k_{1eff} \cong \frac{k_{1a}}{k_{-1a}} k_{1b}$ (Схема 3). Кинетическая схема механизма разложения представлена на Схеме

Схема 3

Для всех соединений эффективные константы разложения были рассчитаны по теории переходного состояния в диапазоне температур 300-450 К с шагом в 50 К:

$$k(T) = \alpha \frac{kT}{h} \exp\left(-\frac{\Delta G^{\neq}(T)}{kT}\right),$$

после чего они были аппроксимированы уравнением Аррениуса:

$$k = A \exp(-E_a / RT)$$
.

В таблице 2 приведены аррениусовские параметры эффективных констант скорости для всех исследуемых соединений.

Таблица 2. Аррениусовские параметры эффективной константы скорости наиболее выгодного канала разложения исследуемых соединений.

Compound	$log(A/s^{-1})$	E_a , kcal mol ⁻¹
1,1'-azobistriazole (1, N ₈ chain)	16.9	46.9
1,1'-azobistetrazole (2a, N ₁₀)	15.8	28.4

1,1'-azobis(5-methyltetrazole) (2b, N ₁₀)	16.7	31.0
1,1'-azobis(5-nitrotetrazole) ($2c$, N_{10}) ^a	14.4	28.0
1,1'-hydrazobistetrazole (5, N ₁₀)	15.9	34.9
1,1'-azoxybistetrazole (6, N ₁₀) ^a	14.6	23.8
2,2'-azobis(5-nitrotetrazole) (4, N ₈)	15.8	28.7
5,5'-azobistetrazole (3)	16.0	47.5
5,5'- hydrazobistetrazole (7)	15.4	41.9
5,5'- azoxybistetrazole (8)	16.1	44.1

^а Энтальпия азидного интермедиата ниже чем бистетразола. Эффективная константа соответствует отрыву N₂ из азида.

Разложение 1,1'-азобистетразола **2a** протекает аналогично соединению **1**, с раскрытием цикла и выделением азота. Радикальные каналы также оказываются слишком высокими на энтальпийной шкале (Рис. 3).

Рисунок 3. Относительные энтальпии при 0 К в газовой фазе (Δ (Δ H^{0K})) для наиболее выгодных каналов разложения 1,1'-азобистетразола **2a**. Оптимизация геометрии и расчёт энергии нулевых колебаний проведены методом M06-2X/6-311++G(2df,p), электронные энергии рассчитаны методом CCSD(T)-F12b/VDZ-F12. Относительные термодинамические потенциалы отсчитываются от соответствующих величин для **2a**. Все значения в ккал/моль.

Энергии активации наиболее выгодных каналов разложения для **1** и **2a** (46.9 и 28.4 ккал·моль⁻¹ соответственно) близки к соответствующим эффективным барьерам (44.0 и 26.2 ккал·моль⁻¹) разложения (Рис. 2 и 3). Таким образом, как энергия активации, так и эффективный барьер разложения азобистриазола **1**, содержащего 8 атомов азота в цепочке, значительно выше (примерно на 20 ккал·моль⁻¹), чем у азобистетразола **2a**, содержащего 10 атомов азота. Это соответствует экспериментальным данным об их чувствительности к удару: IS <1 Дж для **2a** (*Inorganic Chemistry* **2011**, *50*, 2732-2734) и ~ 4 Дж для **1** (*J Am Chem Soc* **2010**, *132*, 12172-12173). Снижению активационного барьера разложения **2a** по сравнению с **1** способствуют два фактора: более низкая энтальпия интермедиата (2.4 и 13.9 ккал · моль⁻¹) и более низкий барьер отщепления N₂ (23.8 и 30.1 ккал · моль⁻¹, см. Рисунки 2 и 3).

Интересно сравнить эффективные барьеры разложения азобистетразола **2a** и тетразола (TZ) Эффективный барьер разложения тетразола, рассчитанный методом W1, составляет 40.2 ккал/моль, а энтальпия тетразол-азидной перегруппировки составляет 13.4 ккал·моль⁻¹, (*J. Phys. Chem. A* **2011**, *115*, 1743-1753). Эффективный активационный барьер разложения **2a** значительно ниже (26.2 ккал·моль⁻¹, рис. 3). В то же время, барьеры второй элементарной ступени, а именно выделения N₂, одинаковы – 26.8 и 23.8 ккал моль⁻¹ для TZ и **2a**, соответственно. Таким образом, основной вклад в заметное снижение эффективного активационного барьера в случае **2a** вносит изменение термодинамики азидного интермедиата. Относительные энтальпии азидных форм составляют 2,4 и 13,4 ккал/моль для **2a** и TZ соответственно (рис. 3).

Для сравнения мы также рассмотрели разложение 1,1'-азобис (5-метилтетразола), 1,1'- и 2,2'-азобис(5-нитротетразолов) (**2b**, **2c** и **4**, Схема 1). Эти соединения разлагаются по аналогичному механизму. Эффективный активационный барьер для разложения **2b** (28.5 ккал·моль⁻¹) примерно на 2 ккал·моль⁻¹ выше, чем для **2a**. В то же время активационный барьер элементарной реакции отщепления N₂ не сильно меняется (23.9 и 23.8 ккал·моль⁻¹ для **2b** и **2a** соответственно), а также очень близок к этому барьеру для TZ (26.8 ккал·моль⁻¹). Таким образом, изменение эффективного барьера разложения **2b** в основном связано с более высокой энтальпией азидного интермедиата по сравнению с таковой для **2a**. В отличие от предыдущих соединений, реакция раскрытия кольца в случае **2c** экзотермическая. Аррениусовские параметры эффективных констант скоростей приведены в таблице 2. Соединение **4** содержит в себе непрерывную цепочку из 8 атомов азота и разложения соединений **2** и **4** находятся в согласии и их крайне высокой чувствительностью к внешним воздействиям (Таблица 3), соединение **4** даже не было выделено в кристаллическом виде, поскольку детонировало при высушивании.

Мы предположили, что стабилизация интермедиата **2а-I1** по сравнению с азидным интермедиатом тетразола связан с образованием длинной сопряженной π -системы, содержащей азо-мостик и второе тетразольное кольцо. Эта гипотеза подтверждается при рассмотрении разложения 1,1'-гидразинбистетразола **5**, в котором нет такой большой π -системы. Активационный барьер элементарной реакции отрыва N₂ (25.7 ккал/моль) близок к барьеру в TZ (26.8 и ккал моль⁻¹) и **2a** (23.8 ккал моль⁻¹, Рис. 3). В то же время эффективный активационный барьер разложения **5** (32.6 ккал/моль) на ~ 8 ккал/моль ниже, чем у TZ (40.2 ккал/моль), но значительно выше, чем для **2a** (26.2 ккал/моль). Различия в эффективных барьерах в первую очередь связаны с разницей в энтальпии азидных интермедиатов, которая высока для TZ (13.4 ккал·моль⁻¹), значительно ниже для **5** (6.3 ккал·моль⁻¹) и составляет всего ~2 ккал·моль⁻¹ для **2a** (рис. 2). Последний факт согласуется с гипотезой о том, что π -сопряжение через азомостик способствует стабилизации промежуточного азида **2a-I1**.

Для 1,1'-азоксибистетразола **6** раскрытие двух колец не является эквивалентным, азидные интермедиаты дополнительно стабилизируются водородной связью между атомами кислорода и водорода, барьеры отщепления азота из разных интермедиатов также различны

и составляют 24.3 и 22.4 ккал моль⁻¹. Благодаря сильной стаблизации интермедиата, он становится значительно более термодинамически выгодным, а эффективный активационный барьер становится равен барьеру второй стадии отщепления азота - 22.4 ккал моль⁻¹, что ниже чем эффективные барьеры для всех остальных соединений. Таким образом, наши расчеты не подтверждают литературные данные о том, что азокси-мостики по сравнению с азо-мостиками позволяют увеличить энергосодержание без уменьшения стабильности соединений. Наоборот, наши расчеты показывают, что кинетическая стабильность **6** значительно ниже, чем **2a**.

Помимо 1,1'- соединений мы также рассмотрели 5,5'-соединения. 5,5'гидразобистетразолы известны как термически стабильные соединения. Аналогично 1,1'соединениям, разложение протекает с раскрытием кольца и выделением азота. Результаты всех расчетов приведены в таблице 3.

Таблица 3. Энтальпии при 0 К реакции раскрытия кольца ($\Delta_{rxn}H_{RO}^{0K}$), Активационные барьеры реакции отрыва азота ($\Delta^{\#}H_{elim}^{0K}$) и эффективные барьеры разложения ($\Delta^{\#}H_{eff}^{0K}$). Все значения в ккал/моль. Экспериментальные данные температур разложения из дифференциальной сканирующей калориметрии (T_{dec}^{DSC}), чувствительность к удару (*IS*).

Compound	$\Delta_{rxn} H_{RO}^{0K}$	$\Delta H^{\#}_{elim}$	$\Delta H^{\#}_{eff}$	T_{dec}^{DSC} , ${\cal C}$	IS, Дж	
1,2,3-триазол	20.3	29.9	50.2	326 ^a	>50 ^a	
1 1'-азобистриязол (1 N ₂)	13.9	30.1	44.0	~190 ^b	4 ^d	
1,1 usoonorphuson (1,1%)	15.9		11.0	~181°		
1Н-тетразол	13.4 ^e	25.6 ^e	39.0 ^e	188 ^f	<4 ^f	
1,1'-азобистетразол (2а , N ₁₀)	2.4	23.8	26.2	80^{g}	<<1 ^g	
1,1'-гидразинбистетразол (5)	6.9	25.7	32.6			
1,1'-азоксибистетразол (6)	-8.8	22.4	22.4 ^h			
5-аминотетразол	6.3 ⁱ	35.4 ⁱ	41.7 ⁱ	~207 ^j		
5,5'-азобистетразол (3, N ₄)	14.7	34.2	45.2	~150 ^k		
5,5'- гидразинбистетразол (7)	6.2	33.6	39.8	229 ¹	>30 ^m	
5,5'- азоксибистетразол (8)	6.3	35.5	41.8			
1,1'-азобис(5-метилтетразол) (2b)	4.6	23.9	28.5	127 ⁿ		
1,1'-азобис(5-нитротетразол) (2с)	-4.6	26.5	26.5 ^h			
2,2'-азобис(5-нитротетразол) (4)	16.7	9.8	26.5	50°	<<1°	

^a J. Phys. Chem. A **2011**, *115*, 1743-1753.. ^b J Am Chem Soc **2010**, *132*, 12172-12173. ^c Chem Cent J **2018**, *12*. ^d J Am Chem Soc **2010**, *132*, 12172-12173. ^e J. Phys. Chem. A **2011**, *115*, 1743-1753.^f Z. Anorg. Allg. Chem. **2008**, *634*, 1711-1723. ^g Inorganic Chemistry 2011, 50, 2732-2734^{. h} Энтальпия азидного интермедиата ниже чем бистетразола. Эффективная константа соответствует отрыву N₂ из азида. ⁱ J. Phys. Chem. A 2009, 113, 3677-3684.. ^j Thermochim. Acta **1992**, *207*, 115-130. ^k The Journal of Physical Chemistry **1957**, *61*, 261-267. Z. Anorg. Allg. Chem. **2007**, *633*, 2671-2677 ¹ Aust J Chem **1982**, *35*, 1-13. ^m Z. Anorg. Allg. Chem. **2007**, *633*, 2671-2677. ⁿ New J Chem **2012**, *36*, 2447-2450. ^o Dalton Trans **2012**, *41*, 9451-9459.

• Использование кластера: все расчеты методом CCSD(T)-F12/vdz-f12 проведены на кластере с использованием пакета MOLPRO 2010.1. Эти расчеты играют ключевую роль в верификации результатов работы.

• Публикация: M.V. Gorn, N.P. Gritsan, C.F. Goldsmith, V.G. Kiselev, Thermal Stability of Bis-Tetrazole and Bis-Triazole Derivatives with Long Catenated Nitrogen Chains: Quantitative Insights from High-Level Quantum Chemical Calculations. J. Phys. Chem. A 2020, 124, 7665–7677. DOI: 10.1021/acs.jpca.0c04985. IF = 2.6.