ОТЧЕТ О ПРОДЕЛАННОЙ РАБОТЕ С ИСПОЛЬЗОВАНИЕМ ОБОРУДОВАНИЯ ИВЦ

нгу

Аннотация

В независимой части элементарной ячейки кристалла индивидуальной L-аскорбиновой кислоты находится 2 молекулы, имеющие разные по знаку эффективные заряды (L-asc^{q+} и L-asc^{q-}) [1]. Ранее были проведены дифракционные эксперименты по определению кристаллической структуры сокристалла L-аскорбиновой кислоты с L-серином (L-asc-Lser) при значениях давлений в диапазоне от 0.0001 ГПа до 6 ГПа с шагом в 0.5-0.9 ГПа. Также было показано, что данное соединение претерпевает фазовый переход. Была сформулирована гипотеза, что данный переход связан с изменением частичного эффективного заряда молекулы L-аскорбиновой кислоты (L-asc). В настоящей работе для сокристаллов L-asc-L-ser в каждой точке, отвечающей различным значениям внешнего гидростатического давления, были рассчитаны эффективные заряды по Малликену и Хиршфельду. Затем был проведен анализ корреляции между геометрией и эффективными сокристалла L-asc-L-ser с L-asc^{q+} и L-asc^{q-} зарядами молекулы L-asc ИЗ

Тема работы

Влияние гидростатического сжатия на распределение эффективного заряда в сокристаллах L-аскорбиновой кислоты с L-серином

Состав коллектива

Хайновский Марк Андреевич, аспирант, ЛАБМДЭБТИНХИТ НГУ, исполнитель

Архипов Сергей Григореьевич, к.х.н., руководитель

Информация о грантах

Грант президента № МК-3681.2022.1.3

Научное содержание работы

Постановка задачи:

Под термином "соль" в случае молекулярных кристаллов подразумеваются соединения типа A⁺B⁻, где обе молекулы являются низкомолекулярными органическими соединениями. Если не происходит перенос протона с молекулы А на молекулу В, а образуется соединение AB, то такое соединение называют "сокристалл". Однако молекулы, составляющие структуру сокристалла, могут иметь частичный эффективный заряд, поэтому анализ корреляции между конформацией и эффективным зарядом представляет научный интерес.

Один из наиболее распространенных методов механического воздействия – приложение внешнего гидростатического давления. Этот метод широко используется для влияния на межмолекулярные взаимодействия путем изменения межатомных расстояний в кристаллической структуре, в результате чего могут наблюдаться как анизотропное сжатие структуры, так и полиморфное превращение с образованием новой фазы. Совместное использование квантово-химических расчетов и дифракционных экспериментов позволяет структурные ланные. дополнить ланные расположении VТОЧНИТЬ 0 атомов соответствующей картиной распределения электронной плотности в кристаллах, а также интерпретировать и даже предсказать физические и химические свойства.

Подробное описание работы, включая используемые алгоритмы:

Целью научного исследования является путем внешнего воздействия (увеличения давления от 0.0001 ГПа до примерно 6ГПа с шагом в 0.5-0.9ГПа) вызвать структурные превращения в сокристалле L-аскорбиновой кислоты с саркозином (L-asc-NMG) и уточнить ранее полученные структурные данные для сокристалла L-аскорбиновой кислоты L-серина (L-asc-L-ser). Для каждой точки при давлении эффективные заряды молекулы L-asc всеми или некоторыми из следующих методов: по Малликену, Бейдеру, Хиршфельду. Сопоставить геометрию и эффективные заряды молекулы L-asc из сокристаллов с молекулой аскорбиновой кислоты имеющей положительный эффективный заряд l-ascq+ в структуре индивидуальной L-аскорбиновой кислоты и с молекулой аскорбиновой кислоты имеющей отрицательный эффективный заряд l-ascq- в структуре индивидуальной L-аскорбиновой кислоты имеет 2 молекулы в независимой части элементарной ячейки - l-ascq+ и l-ascq-. Это сравнение подтвердит или опровергнет гипотезу о наличии связи между эффективным зарядом L-аскорбиновой кислоты и геометрией этой молекулы.

Расчетная часть:

Квантово-химическое моделирование эволюции электронной структуры сокристалла Lсерина и аскорбиновой кислоты и его изменений в условиях повышенного гидростатического давления до и после структурного фазового перехода проведено методом Кона-Шэма с учетом периодичности электронных волновых функций основного состояния и с полной оптимизацией параметров элементарной ячейки с использованием программного пакета CRYSTAL17 [9]. Структурные свойства молекулярных кристаллов во многом, определяются H-связями, был выбран обменно-корреляционный функционал PBE0, позволяющий адекватно моделировать параметры элементарной ячейки в кристаллах. Использовался базисный набор 6-31G(d,p) из локализованных атомных орбиталей [24]. Внешнее давление соответствовало точкам: 0; 0,65; 1,14; 1,84; 2,36; 2,93; 3,59; 4,60 и 5,30 ГПа, для которых ранее были получены экспериментальные структурные данные. Refcodes в базе данных ССDC: 2321962, 2321963, 2321958, 2321964, 2321961, 2321959, 2321957, 2321960. В данной работе именно эти данные о параметрах элементарной ячейки и координатах атомов были использованы в качестве исходных для моделирования.

Критерий сходимости по энергии для оптимизации геометрии был равен 10-10, градиент RMS <0.0003, смещение RMS <0,0006. SHRINK-фактор, определяющий число k точек в обратном пространстве в схеме Пака–Монкхорста [21], в которых была диагонализирована матрица Кона–Шэма, был равен 8 8. Параметр TOLINTEG, отвечающий за значения интегралов перекрывания, был установлен на 6 6 6 6 12 для разумного компромисса между высокой точностью и расчетной стоимостью вычислений [23]. Все расчеты проведены как с введением дисперсионной поправки D3 по Гримме [18], так и без нее. Расчет ИК колебательных частот показал отсутствие мнимых частот.

Методы решения задач научного исследования:

Расчет при стандартных условиях проводился с использованием обменнокорреляционного функционала **B3LYP**[¹], широко применяющимся для моделирования различных молекулярных кристаллов. Данный функционал позволяет получать параметры геометрии системы, наиболее хорошо согласуемые с референсными.

Для того, чтобы максимально точно описать системы Н-связей, для молекулярных кристаллов широко используется дисперсионная поправка по Гримме (**D3**) [²]. Таким образом, конечный функционал принадлежит семейству DFT-D3 - **B3LYP-D3**.

В качестве базиса использовался полноэлектронный базис **6-31G(d,p)**[³]. Наличие поляризационных функций необходимо для наиболее приближенному к реальности описанию систем Н-связей. Данный базис также зарекомендовал себя в различных расчетах

молекулярных систем, представляя собой разумный компромисс между вычислительными ресурсами и точностью.

Значение **SHRINK**-фактора, определяющего количество k-точек в обратном пространстве по схеме Монкхорста-Пака[⁴], было установлено равным 8.

После получения оптимизированной геометрии необходимо провести расчет колебательных частот, чтобы убедиться в отсутствии первых трех мнимых частот, что является критерием оценки качества предлагаемой стратегии расчета.

Результаты

Молекулярные расчеты эффективных зарядов при различном давлении

Значения параметров элементарной ячейки, оптимизированные при квантовохимических расчетах, приведены в табл. 1. Поскольку расчеты проводились для структурной модели при 0 К, для сравнения с расчетными значениями при атмосферном давлении были использованы экспериментальные зависимости параметра и объема элементарной ячейки от температуры. Для этого использовались данные серии температурных экспериментов при 100–300 К, экстраполированные к 0К [1].

Таблица 1. Сравнение расчетных и экспериментальных параметров элементарной ячейки для L-Ser_L-asc (ПГС P2₁2₁2₁). Параметры α=β=γ=90°. Зеленый цвет соответствует экспериментальным данным [1], синий – расчетным данным без D3, красный -расчетным данным с поправкой D3, желтый – данным, полученных экстраполяцией низкотемпературной серии дифракционных экспериментов.

Р, ГПа	Р, а ГПа а		с	V, A ³				
Фаза низкого давления L-Ser_L-asc								
	5.341	8.763	25.764	1205.70				
0	5.352	8.768	25.594	1200.99				
0	5.186	8.647	25.062	1123.69				
	5.282	8.729	25.562	1178.36				
0.65	5.244	8.666	25.367	1152.73				
0.05	5.261	8.728	25.268	1160.27				
1 1 4	5.191	8.607	25.170	1124.52				
1.14	5.174	8.509	25.080	1104.15				
1.84	5.124	8.494	25.050	1090.21				
1.04	5.143	8.628	24.794	1100.20				
Фаза высокого давления L-Ser_L-asc ^P								
236	5.125	8.417	24.250	1046.07				
2.30	5.147	8.380	24.275	1047.01				
2.03	5.099	8.382	24.084	1029.29				
2.93	5.131	8.358	23.967	1027.77				
3 50	5.070	8.339	23.903	1010.62				
5.59	5.104	8.309	23.821	1010.11				
4.60	5.041	8.303	23.585	987.12				
4.00	5.049	8.226	23.402	971.73				
5 20	5.012	8.259	23.500	972.77				
5.30	5.039	8.278	23.284	971.19				

Сравнение результатов расчета параметров и объема элементарной ячейки с экспериментальными значениями показало, что их лучшее совпадение достигается без использования в расчете дисперсионной поправки.

Так как эмпирическая дисперсионная поправка не изменяет волновую функцию системы, а лишь добавляет вклад в общую энергию, можно прийти к выводу, что функционалы семейства PBE без дисперсионной поправки более точно описывают структурные свойства органических кристаллов, тогда как дисперсионные поправки склонны переоценивать вклад Ван-дер-Ваальсовых взаимодействий.

Изменение относительного объема для экспериментальных и теоретических данных (без D3) позволяют говорить об адекватном моделировании структурных особенностей

сокристаллов (Рис 1.). Скачок удельного объема между 1.84 и 2.36 ГПа соответствует фазовому переходу между фазами L-ser_L-asc и L-Ser_L-asc^P.

Рис 1. Изменение относительного объема сокристалла L-ser_L-asc при гидростатическом сжатии для экспериментальной серии [1] и расчетных данных (6-31G(d,p) PBE0)

В результате фазового перехода происходит поворот -OH фрагмента боковой группы L-аскорбиновой кислоты с разрывом и образованием новых H-связей (рис. 2) [1]

Рис.2 Фрагменты структуры L-ser_L-asc до фазового перехода (1,84 ГПа) и после фазового перехода (2,36 ГПа). В результате фазового перехода происходят поворот – ОН фрагмента цвиттериона L-серина (фрагмент выделен кружком) и разрыв водородных связей 1 и 2 с образованием новых водородных связей 1' и 3

В то же время из экспериментальных данных, на основе скачкообразного изменения параметра элементарной ячейки *с* и, как следствие, объема, можно предположить о наличии второго фазового перехода между 3.59 и 4.60 ГПа. Так как для фазовых переходов характерно перераспределение электронной плотности в кристаллах, структурные изменения будут сопровождаться изменением общего эффективного

заряда сокристаллаПроведен расчет атомных зарядов по Малликену и рассчитан эффективный заряд для сокристаллов L-ser_L-asc в различных точках внешнего давления (таблица 4). Полученные результаты не позволяют говорить о перезарядке сокристалла, как системы, после достижения внешнего давления 1.84 ГПа (Рис. 2.). Несмотря на это, наблюдается перераспределение атомного заряда по его коформерам (L-ser и L-asc) соответственно.

Рис 4. Распределение эффективного заряда коформеров (L-asc и L-ser) и общего эффективного заряда сокристалла в зависимости от приложенного внешнего давления. Прямые линии соответствуют предполагаемым фазовым переходам.

Изменение эффективного заряда коформеров сокристалла в зависимости от давления свидетельствует о сохранении знака заряда на всем диапазоне давлений. Несмотря на это, «перезарядки» общего эффективного заряда для сокристалла не наблюдается. Несмотря на разницу зрядов при переходе между 1,84 и 2,36 ГПа $\Delta q^{L-asc}_{1,84\to2,36}=0,001 \Delta q^{L-ser}_{1,84\to2,36}=0,010$ и $\Delta q^{L-ser}_{1,84\to2,36}=0,009$, подобные изменения слишком малы, чтобы можно было говорить о перезарядке. В то же время можно сказать о перераспределении атомных зарядах в сокристалле L-asc-L-ser.

Так, заряд на атомах С9, О9 и Н9 в молекуле L-аскорбиновой кислоты изменяется: $\Delta q^{C9}_{1,84 \rightarrow 2,36} = 0,007, \Delta q^{O9}_{1,84 \rightarrow 2,36} = 0,015$ и $\Delta q^{H9}_{1,84 \rightarrow 2,36} = -0,009$ соответственно. В то же время изменяется заряд на атоме L-серина O1, образующим водородную связь 2, которая разрывается при фазовом переходе $\Delta q^{O1}_{1,84 \rightarrow 2,36} = -0,019$. Образование новых связей 3 и 1' сопровождается изменением заряда на атомах O8 и H6 в молекуле L-аскорбиновой кислоты $\Delta q^{O8}_{1,84 \rightarrow 2,36} = 0,026 \Delta q^{H6}_{1,84 \rightarrow 2,36} = 0,034$. Подобные изменения связаны прежде всего с перераспределением электронной плотности в ходе фазового перехода, что связано со структурными особенностями фазового перехода, а именно поворотом -OH фрагмента боковой группы L-аскорбиновой кислоты.

Таким образом, изменение связывания в системе L-ser_L-asc ведет к неизбежному изменению эффективного заряда обоих коформеров, но не ведет к перезарядке сокристалла.

В то же время, между внешними давлениями 4,60 ГПа и 5,30 ГПа также наблюдается смена эффективного заряда, что позволяет нам предположить о наличии второго фазового перехода в системе L-asc-L-ser, уточнение механизма которого может стать отправной точкой для будущих исследований

	q, a.e.								
Р,	0	0,65	1,14	1,84	2,36	2,93	3,59	4,60	5,30
ГПа									
L-ser									
01	-	-	-	-	-	-	-	-	-
	0,582	0,584	0,583	0,583	0,602	0,602	0,603	0,603	0,604
02	- 0.648	- 0.651	- 0.655	- 0.655	- 0.621	- 0.621	- 0.619	- 0.618	- 0.618
03	-	0,031	-	-	0,021	-	-	-	-
	0,609	-0,61	0,585	0,611	-0,61	0,611	0,612	0,614	0,615
N1	-	-	-	-	-	-	-	-0.62	-
<u>C1</u>	0,609	0,611	0,581	0,612	0,609	0,614	0,616	0,02	0,623
	0,636	0,639	0,642	0,640	0,631	0,632	0,632	0,634	0,634
	- 0 151	- 0.152	- 0 157	-0.15	- 0 139	- 0 1 3 9	- 0 1 3 9	- 0 141	- 0 141
C3	0,101	0,102	0,107	0,10	-	-	-	-	-
	0,018	0,014	0,018	0,005	0,001	0,003	0,005	0,008	0,010
H1A	0,398	0,398	0,388	0,401	0,399	0,399	0,399	0,399	0,400
H1B	0,389	0,393	0,376	0,397	0,398	0,401	0,403	0,408	0,408
H1C	0,380	0,380	0,369	0,378	0,375	0,374	0,374	0,372	0,373
H2	0,180	0,180	0,182	0,178	0,172	0,172	0,170	0,170	0,170
H3A	0,167	0,168	0,162	0,169	0,164	0,165	0,165	0,166	0,166
H3B	0,131	0,130	0,125	0,128	0,143	0,143	0,143	0,145	0,146
H3	0,383	0,385	0,356	0,388	0,383	0,384	0,386	0,386	0,387
L-asc									
C4	0,615	0,613	0,605	0,608	0,623	0,62	0,619	0,616	0,617
C5	0,194	0,199	0,177	0,202	0,192	0,207	0,209	0,219	0,22
C6	0,326	0,329	0,375	0,338	0,35	0,339	0,34	0,336	0,338
C7	0,049	0,042	0,012	0,031	0,045	0,044	0,042	0,041	0,040
C8	0,143	0,141	0,142	0,135	0,087	0,086	0,087	0,087	0,087
C9	-	0,001	0,02	0,016	0,023	0,025	0,025	0,026	0,028
	0,003								
04	-	-	-	-	-	-	-	-	-
05	0,556	0,557	0,564	0,558	0,556	0,556	0,557	0,559	0,559
05	0,626	0,628	0,614	0,631	0,633	0,635	0,636	0,638	0,638
06	-	-	-	-	-	-	-	-	-
	0,599	0,601	0,589	0,604	0,672	0,673	0,675	0,680	0,680
07	-	-	-	-0,48	-	-	-	-	-
08	- 0,484	0,483	- 0,474	_	- 0,497	0,498	- 0,499	0,501	0,503
	0,639	0,641	0,619	0,644	0,618	0,619	0,619	0,622	0,621
09	-	-	-	-	-	-	-	-	-
	0,627	0,631	0,624	0,638	0,623	0,623	0,623	0,624	0,622
H5	0,385	0,386	0,364	0,389	0,397	0,398	0,4	0,403	0,401

Таблица 4. Распределение заряда по Малликену

H6	0,402	0,404	0,397	0,406	0,440	0,441	0,443	0,448	0,447
H7	0,164	0,167	0,176	0,171	0,16	0,161	0,161	0,163	0,164
H8	0,394	0,398	0,389	0,404	0,406	0,407	0,408	0,411	0,409
H8A	0,123	0,123	0,123	0,125	0,148	0,148	0,149	0,151	0,152
H9	0,374	0,376	0,369	0,379	0,370	0,370	0,370	0,372	0,370
H9A	0,161	0,16	0,152	0,154	0,141	0,14	0,137	0,146	0,145
H9B	0,12	0,122	0,125	0,122	0,141	0,141	0,143	0,132	0,129

Выводы:

В данной работе установлены закономерности между структурными изменениями в ходе фазового перехода между фазами низкого и высокого давления сокристаллов L-ser_L-asc и изменением общего эффективного заряда системы.

Так, изменение сетки водородных связей в результате перехода между фазами L-ser Lasc и L-ser L-asc^P, которое в свою очередь связано с перераспределением электронной плотности на атомах, участвующих в образовании этих связей, непременно ведет к изменению атомных зарядов коформеров. Подобное изменение зарядов оказывается существенным при образовании новых связей 3 и 1', так как именно они вносят больший вклад в изменение эффективного заряда L-аскорбиновой кислоты. В свою очередь разрыв водородной связи 2 приводит к значительным изменениям эффективного заряда L-серина. Несмотря на то, что в совокупности данные изменения зарядов не ведут к перезарядке сокристалла L-ser_L-asc в ходе фазового перехода, можно судить о значительности эффекта структурной перестройки сокристалла. Таким образом, высказанное раннее предположение перезарядке сокристалла ходе фазового перехода подтверждается. 0 В не

Вместе с тем интересным результатом является (пусть и незначительная по величине) смена знака заряда сокристалла между значениями 4,60 ГПа и 5,30 ГПа. Важно отметить, что структурные изменения при таком изменении эффективного заряда незначительны. Поэтому установления причин этого явления может являться отправной точкой для будущих исследований.

Эффект от использования кластера в достижении целей работы

Полученный результат в дальнейшем позволит нам провести расчеты для всех экспериментально полученных при высоком давлении данных с полной оптимизацией геометрии кристалла, для получения точных результатов о зарядовом состоянии конформаций L-asc и сокристалла в целом.

Эффект от использования кластера в достижении целей работы

Все программные расчеты с использованием CRYSTAL17 проведены на кластере НГУ. Это позволяет, с одной стороны, добиться меньшего времени расчета системы, а с другой стороны, позволяет расширить возможности благодаря большим ресурсам кластера.

Перечень публикаций:

- Стендовый доклад: II Школа молодых ученых «Применение синхротронного излучения для решения задач биологии», Новосибирск, 25.10.2023-27.10.2023
- В печать подготовлена статья в ЖСХ

Список литературы:

1. Архипов С. Получение сокристаллов и солей аминокислот с органическими кислотами и сравнение их структуры и свойств со структурами и свойствами исходных компонентов 2015.

2. Boeyens J. C. A., Ogilvie J. F. Models, mysteries, and magic of molecules / J. C. A. Boeyens, J. F. Ogilvie, Dordrecht: Springer, 2008.

3. Boldyrev V. V. Mechanochemistry and Mechanical Activation // Materials Science Forum. 1996. (225–227). C. 511–520.

4. Boldyreva E. V. High-pressure studies of the hydrogen bond networks in molecular crystals // Journal of Molecular Structure. 2004. № 1–3 (700). C. 151–155.

5. Boldyreva E. V. High-pressure diffraction studies of molecular organic solids. A personal view // Acta Cryst Sect A. 2007. № 1 (64). C. 218–231.

6. Boldyreva E. V. Dynamics of Mechanochemical Processes NATO Science for Peace and Security Series A: Chemistry and Biology / под ред. J. A. K. Howard [и др.]., Dordrecht: Springer Netherlands, 2014.С. 77–89.

7. Coduri M. [и др.]. Band Gap Engineering in MASnBr 3 and CsSnBr 3 Perovskites: Mechanistic Insights through the Application of Pressure // The Journal of Physical Chemistry Letters. 2019. № 23 (10). С. 7398–7405.

8. Dar S. A. [и др.]. DFT investigation on electronic, magnetic, mechanical and thermodynamic properties under pressure of some EuMO $_3$ (M = Ga, In) perovskites // Materials Research Express. 2017. № 10 (4). С. 106104.

9. Dovesi R. [и др.]. Quantum-mechanical condensed matter simulations with CRYSTAL // WIREs Computational Molecular Science. 2018. № 4 (8). С. e1360.

10. Drozd K. V. [и др.]. A combined experimental and theoretical study of miconazole salts and cocrystals: crystal structures, DFT computations, formation thermodynamics and solubility improvement // Physical Chemistry Chemical Physics. 2021. № 21 (23). C. 12456–12470.

11. Evtushenko D. N. [μ др.]. A cocrystal of <scp>L</scp> -ascorbic acid with picolinic acid: the role of O—H...O, N—H...O and C—H...O hydrogen bonds and <scp>L</scp> -ascorbic acid conformation in structure stabilization // Acta Crystallographica Section B Structural Science, Crystal Engineering and Materials. 2020. № 6 (76). C. 967–978.

12. Faridi M. A. [и др.]. Pressure induced band-gap tuning in KNbO3 for piezoelectric applications: Quantum DFT-GGA approach // Chinese Journal of Physics. 2018. № 4 (56). С. 1481–1487.

13. Khainovsky M. A., Boldyreva E. V., Tsirelson V. G. Evolution of the Electronic Structure and Elastic Properties of β -glycine under the Influence of External Hydrostatic Pressure: Quantum Chemical Modeling // SIBERIAN JOURNAL OF PHYSICS. 2023. No 1 (18). C. 61–88.

14. Kumar A., Nanda A. In-silico methods of cocrystal screening: A review on tools for rational design of pharmaceutical cocrystals // Journal of Drug Delivery Science and Technology. 2021. (63). C. 102527.

15. Liu Z. [и др.]. DFT study of pressure effects in molecular crystal 4,10-dinitro-2,6,8,12-tetraoxa-4,10-diazatetracyclo-[5.5.0.0 ^{5,9} 0 ^{3,11}]-dodecane // Canadian Journal of Chemistry. 2014. № 7 (92). С. 616–624.

16. Manin A. N. [и др.]. Salicylamide Cocrystals: Screening, Crystal Structure, Sublimation Thermodynamics, Dissolution, and Solid-State DFT Calculations // The Journal of Physical Chemistry B. 2014. № 24 (118). С. 6803–6814.

17. Matveychuk Y. V. [и др.]. Quantum electronic pressure and crystal compressibility for magnesium diboride under simulated compression // Materials Today Communications. 2021. (26). C. 101952.

18. Moellmann J., Grimme S. DFT-D3 Study of Some Molecular Crystals // The Journal of Physical Chemistry C. 2014. № 14 (118). C. 7615–7621.

19. Moggach S. A. [и др.]. How focussing on hydrogen bonding interactions in amino acids can miss the bigger picture: a high-pressure neutron powder diffraction study of ε-glycine // CrystEngComm. 2015. № 28 (17). C. 5315–5328.

20. Moggach S. A., Parsons S., Wood P. A. High-pressure polymorphism in amino acids // Crystallography Reviews. 2008. № 2 (14). C. 143–184.

21. Monkhorst H. J., Pack J. D. Special points for Brillouin-zone integrations // Physical Review B. 1976. № 12 (13). C. 5188–5192.

22. Nazir G. [и др.]. Under Pressure DFT Investigations on Optical and Electronic Properties of PbZrO ₃ // Acta Physica Polonica A. 2018. № 1 (133). С. 105–113.

23. Pascale F. [и др.]. Strategies for the optimization of the structure of crystalline compounds // Journal of computational chemistry. 2022. № 3 (43). С. 184–196.

24. Pritchard B. P. [и др.]. New Basis Set Exchange: An Open, Up-to-Date Resource for the Molecular Sciences Community // Journal of Chemical Information and Modeling. 2019. № 11 (59). С. 4814–4820.

25. Richard D., Rendtorff N. M. Kaolin group minerals under pressure: The study of their structural and electronic properties by DFT methods // Applied Clay Science. 2022. (219). C. 106444.

26. Schatschneider B. [и др.]. Understanding the Structure and Electronic Properties of Molecular Crystals Under Pressure: Application of Dispersion Corrected DFT to Oligoacenes // The Journal of Physical Chemistry A. 2013. № 34 (117). C. 8323–8331.

27. Tariq S. [и др.]. Structural, electronic and elastic properties of the cubic CaTiO $_3$ under pressure: A DFT study // AIP Advances. 2015. № 7 (5). С. 077111.

28. Tsirelson V. G., Stash A. I., Tokatly I. V. Bonding in molecular crystals from the local electronic pressure viewpoint // Molecular Physics. 2016. № 7–8 (114). C. 1260–1269.

29. Voronin A. P., Perlovich G. L., Vener M. V. Effects of the crystal structure and thermodynamic stability on solubility of bioactive compounds: DFT study of isoniazid cocrystals // Computational and Theoretical Chemistry. 2016. (1092). C. 1–11.

30. Wan M. [и др.]. Pharmaceutical Cocrystals of Ethenzamide: Molecular Structure Analysis Based on Vibrational Spectra and DFT Calculations // International Journal of Molecular Sciences. 2022. № 15 (23). С. 8550.

31. Yang C. [и др.]. Experimental and DFT simulation study of a novel felodipine cocrystal: Characterization, dissolving properties and thermal decomposition kinetics // Journal of Pharmaceutical and Biomedical Analysis. 2018. (154). C. 198–206.

32. Yang D. [и др.]. Structural and Computational Insights into Cocrystal Interactions: A Case on Cocrystals of Antipyrine and Aminophenazone // Crystal Growth & Design. 2019. № 11 (19). С. 6175–6183.

33. Yaseen M. [и др.]. Phase transition and thermoelectric properties of cubic KNbO3 under pressure: DFT approach // Journal of Materials Research and Technology. 2021. (11). C. 2106–2113.

34. Zhuravlev Y. N., Atuchin V. V. First-Principle Studies of the Vibrational Properties of Carbonates under Pressure // Sensors. 2021. № 11 (21). C. 3644.