ОТЧЕТ О ПРОДЕЛАННОЙ РАБОТЕ С ИСПОЛЬЗОВАНИЕМ ОБОРУДОВАНИЯ ИВЦ НГУ

1. Аннотация

С помощью эволюционных методов предсказания кристаллических структур подтверждена стабильность фаз CO₂ при давлениях до 1600 ГПа. Стабильными фазами CO₂ являются фазы *I*-42*d* (до 279 ГПа), $P4_2/nmc$ (279–952 ГПа), *Pbcn* (952–1018 ГПа) и *Pa*-3 (выше 1018 ГПа). С помощью первопринципных методов и высокотемпературных расчетов в квазигармоническом приближении в работе впервые были рассчитаны уравнения состояния стабильных фаз CO₂ до давлений около 1600 ГПа. Показано, что высокобарические фазы $P4_2/nmc$, *Pbcn* и *Pa*-3 имеют довольно высокие модули сжатия (290–415 ГПа). Фазы с шестерной координацией атомов углерода *Pbcn* и *Pa*-3 имеют более высокие значения коэффициента теплового расширения по сравнению с фазой $P4_2/nmc$.

2. Тема работы

Уравнения состояния твердых фаз СО2 при мегабарных давлениях.

3. Состав коллектива

- 1. Литасов Константин Дмитриевич; Новосибирский Государственный Университет, в.н.с.
- 2. Гаврюшкин Павел Николаевич; Новосибирский Государственный Университет, Институт Геологии и Минералогии им. В.С. Соболева СО РАН; доцент, с.н.с.
- 3. Инербаев Талгат Муратович; Институт Геологии и Минералогии им. В.С. Соболева СО РАН; с.н.с.
- 4. Беккер Татьяна Борисовна, Новосибирский Государственный Университет, Институт Геологии и Минералогии им. В.С. Соболева СО РАН, в.н.с.
- 5. Сагатов Нурсултан; Институт Геологии и Минералогии им. В.С. Соболева СО РАН, н.с.
- 6. Сагатова Динара; Институт Геологии и Минералогии им. В.С. Соболева СО РАН; н.с.
- 7. Банаев Максим Валерьевич; Новосибирский Государственный Университет; аспирант, инженер.

4. Научное содержание работы

4.1. Постановка задачи

Проведение первопринципных расчетов в рамках теории функционала плотности и квазигармонического приближение для установления фазовых соотношений и уравнений состояния твердых фаз CO₂.

4.2. Современное состояние проблемы

СО₂ является одним из главных компонентов системы С-О-Н-N, которая является основополагающей при исследовании многих природных процессов, как в глубинах Земли, так и в космических объектах. Поэтому исследование физических свойств СО₂ в мультимегабарном (>100 ГПа) интервале давлений является одной из принципиальных задач физики твердого тела, науках о Земле и химической космологии.

Наряду с водой, CO₂ остается одним из стабильных бинарных соединений (из жидких и газообразных) в системе C-O-H-N при давлениях до 400–500 ГПа [1, 2] согласно теоретическим предсказанием кристаллических структур из первых принципов.

Эксперименты в ячейке с алмазными наковальнями и лазерным нагревом позволяют достаточно надежно охарактеризовать диаграммы состояния веществ до давлений 100–200 ГПа и в редких случаях – при более высоких давлениях. В случае CO₂ на фазовой диаграмме при давлениях до 120 ГПа установлено не менее 5 молекулярных фаз (некоторые обнаружены не во всех экспериментах и являются метастабильными), а также кристаллические полимерные и аморфные фазы сверхвысоких давлений [3, 4].

С помощью теоретических методов исследования проведен поиск стабильных структур фаз CO₂, определены параметры уравнений состояния для некоторых из этих фаз и рассчитана линия плавления предсказанных фаз CO₂. Данные статических экспериментов дополнены предсказаниями о стабильности структур с шестерной координацией углерода при давлениях около 1TПа и расчетами линии плавления фазы CO₂-V [5–7].

Диаграмма состояния жидкого CO_2 была экспериментально исследована до давлений порядка 1TПа с помощью ударно-волновых экспериментов [8–12]. Предполагается, что в жидком состоянии CO_2 демонстрирует не менее сложные структурные превращения, что и в твердом состоянии [13]. При ударном сжатии молекулярная жидкая фаза CO_2 (L-I) стабильна до давлений около 40 ГПа [10], выше которого она превращается в полимерную жидкость с координацией атомов 3 и 4 (L-II) [9, 13]. Выше 100 ГПа CO_2 переходит в ионизированную фазу L-III [11].

4.3. Подробное описание работы, включая используемые алгоритмы

Все расчеты проводились в рамках теории функционала плотности (DFT) в пакете программ VASP [14, 15]. Эффекты обменной корреляции рассматривались в приближении обобщенного градиента (GGA) по схеме PBE [16] или приближении локальной плотности (LDA). Электроны внутренних оболочек были аппроксимированы с использованием псевдопотециалов проекционных присоединенных волн (PAW), а валентные электроны были представлены с помощью базиса плоских волн с энергией обрезания 800 эВ. Валентные конфигурации были выбраны как $2s^22p^2$ и $2s^22p^4$ для С и О, соответственно. Зона Бриллюэна была разбита с помощью k-точек сетки Монкхорста–Пака [17] с шагом 0.2 A⁻¹. Поправки Ван-дер-Ваальса учитывались по методу DFT-D3 (IVDW=11) [18]. Кроме псевдопотенциалов PBE, для сравнения использованы псевдопотенциалы SCAN [19], также имплементированные в VASP.

Предсказание кристаллических структур выполнялось с использованием метода случайной выборки, реализованного в пакете AIRSS [20, 21] и эволюционных алгоритмов, реализованных в пакете USPEX [22-24] при давлениях 300, 500, 800, 1000, 1500 и 2000 ГПа. Расчеты по предсказанию кристаллической структуры с использованием пакета USPEX проводились для 1-6 формульных единиц на элементарную ячейку. Размер первого поколения в расчетах составил 65 структур. После релаксации 55% структур с наименьшими энтальпиями были отобраны и использованы для создания следующего поколения следующим образом: 40% всех структур были созданы за счет наследственности, 15% – за счет атомных мутаций, 10% – за счет перестановок решетки и 35% – случайным образом. В среднем при каждом давлении производилось и релаксировалось 35 поколений. Используя AIRSS, около 4000 структур были случайным образом сгенерированы и релаксированы при каждом давлении. Во всех расчетах по прогнозированию кристаллической структуры релаксация среднего качества проводилась с использованием сопряженного градиента. Настройки среднего качества были следующими: энергия отсечки плоской волны – 500 эВ; сетка отбора проб по k-точкам Монкхорста–Пака с шагом – 0.5 A^{-1} ; Гауссово размытие с параметром $\sigma = 0.1$ эВ.

Для учета температурного эффекта был использован метод решеточной динамики в квазигармоническом приближении. Для этой цели были рассчитаны частоты колебаний решетки с использованием метода конечных смещений, реализованного в программе РНОNOPY [25]. Силовые константы в реальном пространстве были рассчитаны с использованием метода суперячейки и метода конечных смещений с суперячейкой $2 \times 2 \times 2$ и q-сеткой $31 \times 31 \times 31$ для всех структур. При этом использовались качественные

настройки: энергия обрезания – 1000 эВ, шаг дискретизации сетки k-точек – 0.18 A⁻¹, σ = 0.05 эВ.

Как правило, квазигармоническое приближение корректно работает до 0.5–0.75 температуры плавления кристалла, но также можно ожидать физически правильных качественных результатов даже вблизи температуры плавления [26, 27]. Также известно, что квазигармоническое приближение хорошо работает для систем с объемом ячейки менее 22 А³/атом, а точность увеличивается с уменьшением атомного объема [28]. При высоких температурах и сверхвысоких давлениях, расхождение в результатах, полученных с помощью квазигармонического приближения и, например, молекулярной динамики становятся пренебрежимо малы [29, 30]. Это связано с тем, что вклад ангармонизмов существенно уменьшается с ростом давления. Следовательно, в нашем случае (давления выше 200 ГПа), использование квазигармонического приближения через уравнение состояния Берча–Мурнагана третьего порядка [31].

4.4. Полученные результаты

Проведенные расчеты по предсказанию структур при 300, 500, 800, 1000, 1200 и 1500 ГПа с использованием GGA-PBE почти полностью воспроизвели результаты работы [5] несмотря на то, что в оригинальной работе ис- пользовались другие методы предсказания структур (рис. 1). Использование дополнительных методов расчета LDA и SCAN приводит к близким результатам (табл. 1). Стабильными фазами CO₂ на разных интервалах давления от 100 до 1600 ГПа являются фазы с четверной координацией атомов углерода *I*-42*d* (или CO₂-V) (до 279 ГПа) и *P*4₂/*nmc* (279–952 ГПа), а также фазы с шестерной координацией атомов углерода *Pbcn* (952–1018 ГПа) и *Pa*-3 (выше 1018 ГПа) (см. также [5]). С учетом нулевых колебаний (при T = 0K) давление перехода *I*42*d*–*P*4₂/*nmc* не меняется, тогда как давления переходов *P*4₂/*nmc*–*Pbcn* и *Pbcn*–*Pa*-3 немного понижаются до 932 и 1013 ГПа, соответственно (табл. 1).

Рис. 1. Разница энтальпий фаз, рассчитанная с использованием GGA-PBE для наиболее стабильных модификаций CO₂ в области давлений фазовых переходов: (а) 100–400 ГПа, значения энтальпий нормированы относительно CO₂-*I*-42*d* и (b) 800–1400 ГПа, значения энтальпий нормированы относительно CO₂-*Pbcn*.

Фазовый переход	GGA-PBE (ГПа)	LDA (ГПа)	SCAN (ГПа)	[5]			
Без учета нулевых колебаний (ZPE) фононов							
I 42 <i>d</i> -P4 ₂ /nmc	279	262	288	285			
P42/nmc-Pbcn	952	920	1008	968			
$Pbcn-Pa\overline{3}$	1018	994	1045	1032			
С учетом нулевых колебаний (ZPE) фононов							
I-42d-P42/nmc	279	251	288				
P42/nmc-Pbcn	932	884	983				
$Pbcn-Pa\overline{3}$	1013	972	1043				

Таблица 1. Давления фазовых переходов фаз СО2, рассчитанные разными методами.

Важно подчеркнуть, что в предыдущих работах никак не отмечалось, что структура Pa-3 – это структура пирита (FeS₂), а структурный переход от *Pbcn* к *Pa-3* также характерен для системы SiO₂, где этот переход наблюдается при давлении около 215 ГПа [32]. При этом *Pbcn* – это структура PbO₂ (SiO₂-сейфертит). Как показано ниже, при высокой температуре для CO₂ обе *P*–*T*-границы (в CO₂ и в SiO₂) имеют отрицательный наклон.

Для установленных стабильных фаз CO₂ были рассчитаны P-V-T уравнения состояния и термодинамические параметры. Данные, рассчитанные по уравнению состояния Берча–Мурнагана (ур. (1)) представлены в табл. 2. Для фаз $P4_2/nmc$, Pbcn и Pa-3 рассчитанные модули всестороннего сжатия являются довольно высокими. Возможно, это связано с трудностями в определении V_0 при высоких давлениях, когда фаза не стабильна

при 0 ГПа. Тем не менее представленные в табл. 2 данные корректно описывают кривые сжимаемости фаз CO₂ на выбранном интервале давлений.

Параметры сжимаемости, полученные по методу GGA-PBE, практически совпадают с LDA. Они отличаются только по объему при нулевых давлениях. Объем ячейки, рассчитанный по методу LDA, меньше объема, рассчитанного по методу GGA-PBE на 5.4% при 10 ГПа и на 2.3% при 1000 ГПа. Данные, рассчитанные по методу SCAN, практически совпадают с GGA-PBE.

На рисунке 2 для фазы *I*-42d проведено сравнение с предыдущими данными. Показано хорошее соответствие данных LDA с экспериментальными данными [33] и данных GGA-PBE с экспериментальными данными [4, 34]. Обычно, для других фаз экспериментальная кривая располагается между GGA-PBE и LDA и для вычислений берется среднее значение объема при нулевом давлении.

Кривые сжимаемости для всех стабильных фаз CO₂ при давлениях до 1200 ГПа приведены на рис. 3. Здесь же показаны кривые, рассчитанные при высокой температуре (3000К). При переходе *I*-42*d*-*P*42/*nmc* объем ячейки понижается на 1%, при переходе *P*4₂/*nmc*-*Pbcn* – на 4%, а при переходе от *Pbcn*-*Pa*-3 – на 2%.

Рис. 2. Сравнение кривых сжимаемости фазы CO₂-*I*-42*d* с данными предыдущих теоретических [33, 35] и экспериментальных (Exp.) работ [4, 33–34].

Таблица 2. Параметры уравнения состояния Берча– Мурнагана 3 порядка для фаз CO₂, рассчитанные при 0 К в различных интервалах давлений по методу GGA-PBE. Для фазы *I*-42*d* показаны также данные расчетов по методу LDA.

Интервал давлений, ГПа	V_0 , $\stackrel{\circ}{\mathrm{A}}^3$ на ячейку	<i>K</i> ₀ , ГПа	K	RMS
I-42d, GGA-PBE				
20-300	24.82	92.35	4.70	2.02
20-100	24.12	122.62	3.97	0.26
<i>I</i> 42 <i>d</i> , LDA				
20-300	23.50	95.07	5.03	2.00
20–100	22.79	130.60	4.14	0.43
P42/nmc				
200–1200	19.72	291.82	3.84	8.71
280-1200	19.39	314.96	3.80	6.13
Pbcn				
400-1200	17.24	415.42	3.76	3.68
800-1200	17.23	415.45	3.77	2.40
P a - 3				
420–1600	17.23	380.39	3.83	1.36
800–1600	17.23	380.40	3.83	0.51

RMS – среднеквадратичное отклонение.

Рис. 3. Кривые сжимаемости фаз CO₂ в интервале давлений 200–1200 ГПа в области фазовых переходов, рассчитанные помощью методов GGA-PBE, LDA и GGA-PBE при 3000К.

Перед расчетом фазовой диаграммы CO₂ было проведено сравнение границы перехода CO₂-IV–CO₂-V (*I*-42*d*) с работой [35], где использовались сходные методы расчета. Отклонение границы находится в пределах 2 ГПа, что подтверждает точность выбранных

методик расчета. Результаты расчета фазовой диаграммы CO₂ с помощью метода GGA-PBE показаны на рис. 5. Рассчитанная *P*–*T*- граница *P*4₂/*nmc*–*Pbcn* хорошо согласуется с данными из работы [5]. Остальные *P*–*T*-границы до этого не были исследованы. *P*–*T*-граница *I*-42*d*–*P*4₂/*nmc* имеет небольшой отрицательный наклон, равный –2МПа/К. *P*–*T* граница *P*4₂/*nmc*–*Pbcn* имеет отрицательный наклон равный –10МПа/К при 0–1000К, который увеличивается до –33МПа/К при 4000–5000 К. *P*–*T*-граница *Pbcn* – *Pa*-3 имеет небольшой отрицательный наклон в среднем –3МПа/К (рис. 5). Расчеты с помощью методик LDA и SCAN при высоких температурах немного (в пределах 10 ГПа) занижают и завышают давления перехода, соответственно.

Рис. 4. Тепловое расширение фаз CO₂, рассчитанное при 300 К и разных давлениях (без учета ангармонических колебаний).

Рис. 5. Фазовая *P*–*T* диаграмма CO₂, рассчитанная с помощью метода GGA-PBE. Пунктиром изображена граница *P*42/*nmc*–*Pbcn* воспроизведенная из данных в работе [5].

5. Перечень публикаций, содержащих результаты работы

Литасов К.Д., Бражкин В.В., Сагатов Н.Е., Инербаев Т.М. (2024). Уравнения состояния твердых фаз СО₂ при мегабарных давлениях. *Письма в ЖЭТФ*, 119(3), 206–211. (IF = 1.3)

6. Эффект от использования кластера в достижении целей работы

Кластер ИВЦ НГУ является основным кластером нашей группы, без использования ресурсов кластера достижение большинства результатов было бы технически невозможным. Выражаю благодарность всему коллективу ИВЦ НГУ.