Тема работы:

Скрининг металл-органических координационных полимеров (МОКП) для извлечения гелия из природного газа.

Состав коллектива:

Гренев Иван Васильевич, к.ф.-м.н., н.с. лаборатории ЛСДУиНС ФФ НГУ.

E-mail: greneviv@gmail.com

Шубин Александр Аркадьевич, к.ф.-м.н., ведущий инженер-программист ИК СО РАН.

E-mail: aashubin@ngs.ru

Информация об источнике финансирования:

Работа выполнена в рамках проекта РФФИ 19-33-60087, "Скрининг металлорганических координационных полимеров для извлечения гелия из природного газа", НГУ, 01.11.2019-31.10.2022, руководитель Гренев Иван Васильевич.

Аннотация работы:

Проведен in silico скрининг 10143 структур металл-органических координационных полимеров (МОКП) для задачи адсорбционного и мембранного разделения Не и N₂. В результате скрининга определены наиболее перспективные структуры МОКП для селективного газоразделения смеси Не и N₂, а также определен диапазон структурных параметров материалов, соответствующий наиболее эффективным адсорбентам.

Постановка задачи:

Основной задачей проекта являлось проведение in-silico скрининга экспериментально подтвержденных баз структур МОКП методами Монте-Карло и молекулярной динамики, направленного на определение наиболее перспективных МОКП для мембранного селективного разделения Не и N₂.

Современное состояние научной проблемы:

Публикации, в которых решаются задачи крупномасштабного in-silico поиска наиболее перспективных МОКП для мембранного селективного разделения различных смесей газов, стали активно появляться только в последние 5 лет. Это связанно с появлением и развитием структурных баз экспериментально подтвержденных МОКП. Большая часть работ посвящены скринингу МОКП для задач очистки воздуха [1–2], удаления компонент из природного газа [3], удаления углекислого газа из воздуха [4], разделения углеводородов [5]. Тем не менее, в литературе отсутствует систематические исследования, посвященные скринингу МОКП для задачи селективного адсорбционного или диффузионного разделения Не и N₂. Список литературы:

 Altintas C. et al. Database for CO2 Separation Performances of MOFs Based on Computational Materials Screening // ACS Applied Materials & Interfaces. 2018. Vol. 10, № 20. P. 17257–17268.
Altintas C. et al. Computer simulations of 4240 MOF membranes for H2/CH4 separations: insights into structure–performance relations // Journal of Materials Chemistry A. 2018. Vol. 6, № 14. P. 5836–5847. 3. Altintas C., Keskin S. Molecular Simulations of MOF Membranes and Performance Predictions of MOF/Polymer Mixed Matrix Membranes for CO2/CH4 Separations // ACS Sustainable Chemistry & Engineering. 2019. Vol. 7, № 2. P. 2739–2750.

4. Daglar H., Keskin S. Computational Screening of Metal–Organic Frameworks for Membrane-Based CO2/N2/H2O Separations: Best Materials for Flue Gas Separation // The Journal of Physical Chemistry C. 2018. Vol. 122, № 30. P. 17347–17357. 5. Altintas C., Keskin S. Molecular simulations of MOF membranes for separation of ethane/ethene and ethane/methane mixtures // RSC Advances. 2017. Vol. 7, № 82. P. 52283–52295.

Используемые методы и алгоритмы

В качестве первоначальной базы структур была использована "Computation Ready, Experimental Metal–Organic Framework Database" (CoRE MOF 2019) [1]. На первом шаге из данной базы структур были отобраны только упорядоченные структуры, из которых были удалены все молекулы растворителя. Таким образом, была сформирована база структур, содержащая 10143 структуры. Далее, с помощью Zeo++ [2] были рассчитаны плотность, пористость, доступная площадь поверхности, лимитирующий размер пор и наибольшие диаметры полостей для каждой структуры. На втором шаге, из данной базы были отобраны MOF с ненулевой доступной поверхностью и с лимитирующим размером пор больше 3.75 Å, так чтобы оба газа могли проходить через мембрану (кинетический диаметр для N₂ – 3.64 Å, для He – 2.56 Å). Таким образом, количество анализируемых структур был сокращен до 5944 структур.

Адсорбционные и диффузионные свойства исследуемых структур моделировались с помощью методов равновесной молекулярной динамики и Монте-Карло в большом каноническом ансамбле. Взаимодействия описывались суммой потенциалов Леннарда-Джонса 6-12 и Кулоновских взаимодействий. Параметры потенциала 6-12 для атомов структуры адсорбента моделировались в соответствии с силовым полем Dreiding [3], а в случае отсутствия необходимых параметров, данные извлекались из силового поля UFF [4]. Молекула азота моделировалась в соответствии с силовым полем TraPPE [5] в виде гантели с жесткой межатомной связью длинной 1.1 Å, а параметры взаимодействия LJ для каждого атома составляли $\varepsilon_N/k_B = 36.0$ К и $\sigma_N = 3.31$ Å. Квадрупольный момент N₂ описывался тремя зарядами: два заряда -q, где q = 0.482e, располагающимися в центрах атомов азота, заряд +2q располагался в центре масс молекулы. Молекула гелия моделировалась одноцентровой моделью [6] с параметрами $\sigma_{He} = 2.64$ Å и $\varepsilon_{He}/k_B = 10.9$ К. Перекрестные константы взаимодействия LJ рассчитывались с использованием правила Лоренца-Бертло. На расстоянии более $R_{cutoff} = 12.8$ Å взаимодействие ЛД обрезалось, причем начиная с расстояния 0.9 R_{cutoff}, потенциал сшивался с нулем. Определение эффективных зарядов методами REPEAT [7] или DDEC6 [8], которые обладают высокой точностью, требуют проведения DFT расчетов для каждой рассматриваемой структуры. Разумной альтернативой является использование моделей, полученных с помощью машинного обучения на базе структур CoRE MOF DDEC [9,10], которая содержит 2932 оптимизированные структуры с рассчитанными эффективными зарядами методом DDEC. Таким образом, эффективные заряды атомов структуры были определены, используя обученную модель Random Forest в программе PACMOF [11]. Дальнодействующие Кулоновские взаимодействия рассчитывались с помощью метода суммирования Эвальда. Размер фрагментов структуры МОКП выбирался так, чтобы минимальное расстояние в

каждом из направлений было больше 2*R*_{cutoff}. Во всех моделированиях мы принимали, что структура МОКП является жесткой и не содержит каких-либо дефектов.

- Chung Y.G. et al. Advances, Updates, and Analytics for the Computation-Ready, Experimental Metal–Organic Framework Database: CoRE MOF 2019 // J. Chem. Eng. Data. 2019. Vol. 64, № 12. P. 5985–5998.
- Willems T.F. et al. Algorithms and tools for high-throughput geometry-based analysis of crystalline porous materials // Microporous Mesoporous Mater. 2012. Vol. 149, № 1. P. 134– 141.
- 3. Mayo S.L., Olafson B.D., Goddard W.A. DREIDING: a generic force field for molecular simulations // J. Phys. Chem. 1990. Vol. 94, № 26. P. 8897–8909.
- 4. Rappe A.K. et al. UFF, a full periodic table force field for molecular mechanics and molecular dynamics simulations // J. Am. Chem. Soc. 1992. Vol. 114, № 25. P. 10024–10035.
- 5. Potoff J.J., Siepmann J.I. Vapor–liquid equilibria of mixtures containing alkanes, carbon dioxide, and nitrogen // AIChE J. 2001. Vol. 47, № 7. P. 1676–1682.
- 6. J. O. Hirschfelder, C. F. Curtiss, R. B. Bird. Molecular theory of gases and liquids. New York: Wiley, 1954. 1219 p.
- Campañá C., Mussard B., Woo T.K. Electrostatic Potential Derived Atomic Charges for Periodic Systems Using a Modified Error Functional // J. Chem. Theory Comput. 2009. Vol. 5, № 10. P. 2866–2878.
- 8. Manz T.A., Limas N.G. Introducing DDEC6 atomic population analysis: part 1. Charge partitioning theory and methodology // RSC Adv. 2016. Vol. 6, № 53. P. 47771–47801.
- 9. Nazarian D., Camp J.S., Sholl D.S. A Comprehensive Set of High-Quality Point Charges for Simulations of Metal–Organic Frameworks // Chem. Mater. 2016. Vol. 28, № 3. P. 785–793.
- 10. Nazarian D. et al. Large-Scale Refinement of Metal–Organic Framework Structures Using Density Functional Theory // Chem. Mater. 2017. Vol. 29, № 6. P. 2521–2528.
- 11. Kancharlapalli S. et al. Fast and Accurate Machine Learning Strategy for Calculating Partial Atomic Charges in Metal–Organic Frameworks // J. Chem. Theory Comput. 2021. Vol. 17, № 5. P. 3052–3064.

Полученные результаты

В результате реализации проекта был проведен in silico скрининг структур МОКП для задач адсорбционного и мембранного разделения Не и N_2 из сформированной базы структур. На ряде хорошо исследованных структур МОКП, показано, что используемые в работе модели потенциалов межмолекулярного взаимодействия позволяют с хорошей точностью предсказывать изотермы адсорбции N_2 при 298K в широком диапазоне давлений. Далее с помощью методов Монте-Карло в большом каноническом ансамбле и равновесной молекулярной динамики были рассчитаны константы Генри и коэффициенты диффузии Не и N_2 при низком заполнении пористого пространства при 298 К. Из данных величин были рассчитаны адсорбционные, диффузионные и мембранные селективности, а также проницаемости по Не и N_2 . Показана важность учета электростатических взаимодействий молекул N_2 и атомов структур МОКП для расчета констант Генри и теплот адсорбции. Исследована зависимость адсорбционной селективности для случая эквимолярной смеси Не и N_2 от давления в системе.

Рассмотрены две модели адсорбционного разделения Не и N₂, соответствующие процессам вакуумной короткоцикловой безнагревной адсорбции и напорной

короткоцикловой безнагревной адсорбции. С помощью метрики APS (Adsorbent Performance Score), которая рассчитывается как произведение адсорбционной селективности на адсорбционную емкость по азоту, произведено ранжирование структур МОКП по эффективности использования для разделения эквимолярной смеси He и N₂ при 298К. Для обеих моделей процесса адсорбционного газоразделения определены предельные значения метрики APS и определены Топ-10 наиболее перспективных структур МОКП. На примере вакуумной короткоцикловой безнагревной адсорбции показано, что метрика APS в целом коррелирует с более комплексной метрикой API (Adsorbent Performance Indicator), которая дополнительно учитывает теплоту адсорбции. Анализ Топ-100 лучших структур МОКП позволил для каждой модели процесса адсорбционного газоразделения выделить диапазоны структурных параметров, соответствующие наиболее эффективным адсорбентам. К таким структурным параметрам отнесены: лимитирующий размером пор, наибольший диаметр полостей, плотность, удельная поверхность и объем микропор, пористость. Для сравнения эффективности использования МОКП для адсорбционного разделения с традиционными материалами дополнительно был проведен скрининг более 200 цеолитных и цеолитоподобных структур в SiO₂ форме. Показано, что цеолиты и цеолитоподбные материалы существенно уступают МОКП.

На ряде хорошо исследованных структур МОКП, показано, что используемые в работе модели потенциалов межмолекулярного взаимодействия позволяют только проводить оценку мембранных проницаемостей Не и N_2 при 298К. Тем не менее, в случае мембранного разделения эквимолярной смеси Не и N₂ при 298К показано, что мембраны из МОКП слабо селективны по гелию (S < 10), но обладают высокой проницаемостью. Структуры МОКП, благодаря вариации химического состава, обладают большей селективностью и проницаемостью как по гелию, так и по азоту в сравнении с цеолитами. Сравнение результатов скрининга МОКП с эмпирической "верхней границей" Робсона для полимерных материалов, показало, что полимерные мембраны обладают большей селективностью по гелию и меньшей проницаемостью в сравнении с МОКП. Таким образом, существует два варианта использования МОКП для разделения смесей гелия и азота мембранным способом: либо использование селективных мембран МОКП по азоту, либо синтез материала мембраны путем смешивания селективных по гелию МОКП с полимерными материалами. В последнем случае, такая смешанная мембрана будет иметь высокую селективность по гелию благодаря добавлению полимеров и высокую проницаемость из-за добавления МОКП.

Полученные результаты могут служить руководством по подбору структур для задачи разделения He/N₂ с последующим синтезом МОКП.

Эффект от использования кластера в достижении целей работы.

Необходимость использования методов Монте-Карло и молекулярной динамики для моделирования процессов адсорбции и диффузии в пористых телах сопряжено с большими затратами вычислительной мощности. В случае проведения in silico скрининга затраты вычислительной мощности возрастают прямо пропорционально количеству рассматриваемых структур. В данной работе исследованы адсорбционные и диффузионные свойства для разделения смесей гелия и азота для более 10000 структур МОКП. Так, по оценке авторов работы, без использования вычислительных мощностей ИВЦ НГУ непосредственное проведение in silico скрининга (без учета проведенной работы по

подготовке расчетных моделей и базы структур МОКП) на типичном персональном пк (8 ядер) заняло бы более 1.5 года. Таким образом, использование ресурсов кластера является определяющим для достижения целей работы.

Перечень публикаций, содержащих результаты работы

1. Grenev I.V. et al. A novel adsorption-based method for revealing the Si distribution in SAPO molecular sieves: The case of SAPO-11 // Microporous Mesoporous Mater. 2021. Vol. 328. P. 111503. (DOI: 10.1016/j.micromeso.2021.111503), Q1

2. Grenev I.V. et al. The impact of framework flexibility and defects on the water adsorption in CAU-10-H // Phys. Chem. Chem. Phys. 2021. Vol. 23, № 37. P. 21329–21337. (DOI: 10.1039/D1CP03242A), Q1

3. Grenev I.V., Gavrilov V.Yu. In Silico Screening of Metal–Organic Frameworks and Zeolites for He/N2 Separation // Molecules. 2023. Vol. 28, № 1. P. 20. (DOI: 10.3390/molecules28010020), Q1