Тема работы

Теоретический анализ электронной структуры и спектроскопических свойств диядерных комплексов металлов 11-ой группы (Cu(I), Ag(I), Au(I)) с тетрафосфановым мостиковым лигандом

Состав коллектива

Научные руководители:

- Грицан Нина Павловна, д.х.н., профессор, зав. лаб. ЛКХКМ, ИХКГ СО РАН
- Горбунов Дмитрий Евгеньевич, к.ф.-м.н., н.с. ЛКХКМ, ИХКГ СО РАН

Одуд Илья Михайлович, бакалавр ФФ НГУ

Постановка задачи

Данная работа посвящена изучению электронной структуры и теоретическому анализу фотофизических свойств диядерных комплексов катионов металлов 11-ой группы с Nгетероциклическими карбеновыми лигандами на базе мостикового лиганда тетракис(дифенилфосфин)бензола (рисунок 1). недавно синтезированных нашими коллегами⁽¹⁾. Целью работы является детальное понимание электронных, спектральных и фотофизических свойств новых металлорганических соединений с использованием методов расчетной квантовой и компьютерной химии. Для достижения этой цели мы решали следующие задачи:

- 1. Установление электронной структуры новых диядерных комплексов.
- 2. Качественное исследование координационных связей металлов 11-ой группы с лигандным окружением.
- 3. Теоретический расчет электронных спектров поглощения исследуемых комплексов.

Описание работы

На данный момент, комплексы, обладающие *термически активированной замедленной* флюоресценцией (thermally activated delayed fluorescence, TADF), являются наиболее перспективными электро-люминофорами⁽³⁾. Ключевым фактором реализации механизма TADF является близкое расположение нижних синглетных и триплетных возбуждённых состояний (до ~1000 см⁻¹), позволяющее установиться равновесию между уровнями разной

мультиплетности, и использовать не только синглетные, но и триплетные уровни в процессах излучения.

Рисунок 1. а) структурная формула изучаемых комплексов, где M = Cu(I), Ag(I) и Au(I). б) схематичное строение комплекса Cu-ванна. в) схематичное строение комплекса Cu-ванна.

Для выполнения поставленных задач применялись следующие методы:

- Полноэлектронные волновые функции комплексов рассчитывали методом DFT со скалярным релятивистским гамильтонианом DKH2 и гибридным функционалом B3LYP. Также использовали составной релятивистский базисный набор: Для атомов Cu, Ag, Au – базисный набор WTBS; Для остальных атомов (H, C, N и P) – модифицированный для релятивистских расчетов базисный набор def2-TZVP.
- Рассчитанные волновые функции анализировали при помощи метода QTAIM пакета Multiwfn версии 3.7.
- Положения максимумов полос поглощения и силы осцилляторов электронных переходов были рассчитаны методом зависящей от времени теории функционала плотности (TD-DFT) с использованием гибридного функционала DKH2-B3LYP с базисным набором из пункта 1 (использовано RIJCOSX приближение).

Квантовохимические расчёты выполнялись с использованием программных пакетов Gaussian16 и Orca 4.2.1 на базе вычислительного кластера ИВЦ НГУ.

Результаты

Исследование координационных связей

Для всех комплексов в таблице 1 приведены рассчитанные для критических точек координационных связей (КТС) топологические дескрипторы. Из данных таблицы 1 видно, что значения электронных плотностей ρ в КТС связей М-С лежат в диапазоне от 0.098 до

0.140, а для связей М-Р от 0.060 до 0.110. Учитывая, что энергия (или сила) связи обычно коррелирует с величиной **р** в КТС, можно предположить, что связи М-С в среднем сильнее, чем связи М-Р. Кроме того, из данных по значениям *о* в КТС (таблица 1) видно также, что как для связей М-С, так и для связей М-Р, наименьшие значения *р* соответствуют комплексам серебра, а наибольшие – комплексам золота. Подобное отличие указывает на немонотонную зависимость силы этих связей от номера атома металла: самые сильные связи образует катион золота, а самые слабые – катион серебря. Следует, однако, отметить, что в случае комплексов золота для связей Au-P наблюдается очень большой разброс длин (от 2.270 до 3.239 Å). При этом наименьшие длины связей короче суммы ковалентных радиусов атомов Au и P (2.50 Å), что типично для полярных ковалентных связей [58], а наибольшее значение длины связи Au-P уже приближается к сумме ван-дер-Ваальсовых радиусов (r_{vdW}) атомов Au и P, равной 3.44 Å, если использовать значение $r_{vdW} = 1.66$ Å. Хотя недавно для Аи было предложено существенно большее значение $r_{vdW} = 2.32$ Å. Значения лапласианов электронных плотностей $\Delta \rho$ в КТС для всех 36-ти связей больше нуля (таблица 1), что указывает на ионный характер всех рассмотренных координационных связей. Значения величин |V|/G в КТС для всех исследованных координационных связей лежат в интервале от 1.25 до 1.53, что попадает в интервал значений для частично ковалентных связей (от 1 до 2 – частично ковалентные, >2 – ковалентные).

Таблица 1. Результат исследования координационных связей комплексов монетных металлов 11-ой группы. Данные QTAIM анализа: электронная плотность ρ , лапласиан плотности $\Delta \rho$, соотношения средней потенциальной энергии к кинетической энергии Лагранжа (|V|/G) в КТС

Комплекс			N⁰	r(MY), Å	$\sum_{\substack{\lambda \\ A}} r_{cov},$	V /G	Δho	ρ
C - M		в	1	1.948		1.29	0.38	0.107
	n	D	2	1.947	50	1.29	0.38	0.107
	С	к	1	1.960	2.1	1.28	0.37	0.105
			2	1.941		1.29	0.38	0.109
			1	2.131		1.25	0.34	0.098
	bD	В	2	2.109	00	1.24	0.33	0.094
	A	к	1	2.097	2.3	1.26	0.35	0.101
			2	2.097		1.26	0.35	0.101
	h	В	1	2.105	2.210	1.30	0.35	0.111
			2	2.078		1.31	0.37	0.117
		к	1	1.992		1.37	0.42	0.140
			2	2.027		1.34	0.41	0.130
P - M		В	1	2.300		1.35	0.17	0.075
			2	2.284		1.36	0.18	0.077
			3	2.296	2.440	1.36	0.17	0.075
	Cu		4	2.293		1.36	0.18	0.076
		К	1	2.478		1.34	0.16	0.070
			2	2.478		1.35	0.17	0.073
			3	2.478		1.36	0.16	0.073
			4	2.478		1.34	0.16	0.071
	Ag	В	1	2.537		1.28	0.15	0.063
			2	2.501		1.30	0.15	0.066
			3	2.480		1.29	0.15	0.065
			4	2.515	2.590	1.27	0.14	0.060
		к	1	2.478		1.30	0.16	0.067
			2	2.478		1.30	0.16	0.067
			3	2.478		1.30	0.16	0.067
			4	2.478		1.30	0.16	0.067
	Au	В	1	2.270		1.53	0.17	0.110
			2	2.736		1.21	0.11	0.047
			3	2.448	2.500	1.37	0.16	0.079
			4	2.391		1.41	0.17	0.088
		к	1	2.292		1.51	0.18	0.108
			2	3.239		1.04	0.04	0.020
			3	2.354		1.43	0.18	0.094
			4	2.592		1.28	0.13	0.060

Теоретический расчет электронных спектров поглощения

Расчёты энергий переходов и сил осцилляторов в ЭСП всех исследованных комплексов проведены методом TD-B3LYP/def2-TZVP. На рисунке 2а приведён для примера экспериментальный ЭСП для комплекса Си-кресло, растворённого в ацетоне, а на рисунке 2г - ЭСП для порошка смеси комплекса Си-кресло и BaSO4, а также расчетные энергии переходов. Видно, что в целом расчет неплохо согласуется с экспериментальным спектром. Как в случае ЭСП комплекса Си-кресло (рисунок 2), так и для всех остальных исследованных комплексов, в длинноволновую полосу в спектре поглощения дают вклад переходы в 4 близко расположенных возбужденных состояния (S₁ – S₄, таблица 2). Причём во всех случаях первые два возбуждения $S_0 \rightarrow S_1$ и $S_0 \rightarrow S_2$ имеют много большую силу осциллятора, чем два других ($S_0 \rightarrow S_3$ и $S_0 \rightarrow S_4$) и, следовательно, дают основной вклад в ЭСП комплексов. длинноволновую полосу поглощения Положения максимумов длинноволновых полос поглощения неплохо согласуются с расчетными значениями энергий переходов: разница между средним значением энергий интенсивных переходов и максимумом длинноволновой полосы ЭСП лежит в диапазоне от 600 – 1300 см⁻¹ (от 2% до 5% энергии перехода) в зависимости от комплекса.

Рисунок 2. а) Экспериментальный электронный спектр поглощения диядерного комплекса меди в ацетонитриле (черный спектр). Вертикальные красные линии – положения и силы осциллятора электронных переходов, рассчитанные методом TD-B3LYP/def2-TZVP в растворе для оптимизированной в растворе геометрии комплекса в конформации кресло. б) Структура левого фрагмента и в) структура правого фрагмента. г) Электронный спектр поглощения порошковой смеси Си-кресло и BaSO₄ – сплошная линия. Вертикальные черные линии – расчёт для полной структуры, синие – для левого фрагмента (б), красные – для правого фрагмента (в).

Таблица 2. Расчетные значения энергий переходов в четыре нижних синглетных и триплетных состояния, силы осциллятора переходов в синглетные состояния и максимумы длинноволновых полос твердотельных ЭСП, рассчитанных, как функция Кубелки – Мунка, для порошков комплексов Си-кресло, Ag-ванна и Au-ванна. Силы осциллятора рассчитаны через метод электронного дипольного момента перехода – EDM и скоростного дипольного момент перехода – VDM.

		Си-кресло	1	Аg-ванна			Аи-ванна		
Расчёт	<i>∆Е</i> , см ⁻¹	f _{edm}	f_{VDM}	<i>∆Е</i> , см ⁻¹	f _{edm}	f _{vdm}	<i>∆Е</i> , см⁻¹	f _{edm}	f _{vdm}
S1	25282	0.069	0.006	26040	0.109	0.016	24500	0.144	0.015
S2	26281	0.058	0.008	26710	0.100	0.018	24980	0.017	0.003
S3	27245	0.005	0.001	27840	0.003	0.001	25240	0.066	0.009
S4	28291	0.009	0.002	28370	0.005	0.001	25710	0.003	0.002
T1	23730	1.9.10-6	1.9·10 ⁻⁶	24630	2.1.10-7	2.7.10-7	23160	1.6.10-5	6.0·10 ⁻⁷
T2	24420	2.0.10-5	2.0·10 ⁻⁵	24770	2.4.10-6	2.9·10 ⁻⁶	23410	7.3·10 ⁻⁶	9.8·10 ⁻⁷
Т3	25470	5.8·10 ⁻⁵	5.8·10 ⁻⁵	26350	8.6·10 ⁻⁵	8.0·10 ⁻⁵	23980	1.9.10-4	5.6·10 ⁻⁵
T4	26150	6.3·10 ⁻⁶	6.3·10 ⁻⁶	26870	5.0·10 ⁻⁴	5.7·10 ⁻⁴	24590	1.8·10 ⁻³	1.1.10-4
1/λ _{макс} в ЭСП, см ⁻¹		26481		25791			25540		

Отметим, что в волновые функции возбужденных состояний S_1 - S_4 преобладающий вклад вносят по одному детерминанту, каждый из которых отвечает возбуждению электрона с одной из почти вырожденных занятых молекулярных орбиталей (HOMO или HOMO-1) на одну из почти вырожденных свободных молекулярных орбиталей (LUMO или LUMO+1). Таким образом, природа четырех длинноволновых переходов и вид MO, участвующих в электронных переходах, для всех исследованных комплексов качественно совпадают. Поэтому приводим данные только для комплекса меди в конформации кресло (Cu–кресло), но аналогичная интерпретация длинноволновых полос поглощения распространяется на весь ряд комплексов металлов 11-ой группы (Cu(I) – Au(I)).

Как отмечалось ранее, длинноволновая полоса поглощения в ЭСП комплекса Си-кресло является суперпозицией четырех полос поглощения (рисунок 3). Связано это с тем, что орбитали НОМО и НОМО-1 ($\Delta E = 0.21$ эВ) и LUMO и LUMO+1 ($\Delta E = 0.13 \ eV$) почти вырождены (рисунок 4). Кроме того, орбитали НОМО и НОМО-1 обладают схожей структурой: отвечающая им электронная плотность локализована в основном на d-AO металла. Орбитали LUMO и LUMO+1 при этом локализованы в основном на центральном мостиковом лиганде, причём, основной вклад в LUMO и LUMO+1 дают π^* -MO бензольного кольца.

Рисунок 3. Схема граничных молекулярных орбиталей, энергия МО, и вклады в длинноволновое возбуждение переноса заряда между граничными МО для комплекса а) Си – кресло, и б) для половинок (L – левая часть, R – правая часть).

Эффект от использования кластера ИВЦ НГУ

Благодаря кластеру ИВЦ НГУ были произведены основные расчёты данной работы – полноэлектронные волновые функции основного состояния и возбуждённых комплексов.