Аннотация

Диядерные комплексы металлов 11-ой группы (Cu(I), Ag(I), Au(I)) с тетрафосфановым мостиковым лигандом перспективны для использования в качестве элементорганических светоизлучающих диодов (OLED). Настоящая работа посвящена теоретическому исследованию электронной структуры и физико-химических свойств новых перспективных диядерных комплексов меди, серебра и золота, недавно синтезированных нашими коллегами из ИНХ СО РАН. Работа была выполнена с использованием теории функционала плотности и современных теоретических подходов к анализу расчетных данных.

В результате была получена иерархия по силе координационных связей в исследованных комплексах, и установлено, что в длинноволновую полосу электронного поглощения комплекса вносят вклад возбуждения в 4 нижних возбужденных синглетных состояния, и все эти переходы являются переходами с переносом заряда с металла на лиганд (MLCT типа).

Все полученные данные будут использованы в дизайне новых люминофоров с улучшенными свойствами.

Тема работы

Теоретический анализ электронной структуры и спектроскопических свойств диядерных комплексов металлов 11-ой группы (Cu(I), Ag(I), Au(I)) с тетрафосфановым мостиковым лигандом

Информация о гранте

РНФ №22-13-00077 «Высокоуровневые квантовые расчеты и компьютерное моделирование магнитных и спектральных свойств и термической стабильности функциональных материалов», руководитель д.х.н., проф., зав. лаб ЛКХКМ, ИХКГ СО РАН Грицан Нина Павловна.

Состав коллектива

Научные руководители:

- Грицан Нина Павловна, д.х.н., профессор, зав. лаб. ЛКХКМ, ИХКГ СО РАН
- Горбунов Дмитрий Евгеньевич, к.ф.-м.н., н.с. ЛКХКМ, ИХКГ СО РАН

Одуд Илья Михайлович, аспирант Центра энергетических технологий, Сколтех

Постановка задачи

Данная работа посвящена изучению электронной структуры и теоретическому анализу фотофизических свойств диядерных комплексов катионов металлов 11-ой группы с Nмостикового лиганда гетероциклическими карбеновыми лигандами базе на (таблица тетракис(дифенилфосфин)бензола 1), недавно синтезированных нашими коллегами⁽¹⁾. Целью работы является детальное понимание электронных, спектральных и фотофизических свойств новых металлорганических соединений с использованием методов расчетной квантовой и компьютерной химии. Для достижения этой цели мы решали следующие задачи:

1. Установление электронной структуры новых диядерных комплексов.

- 2. Качественное исследование координационных связей металлов 11-ой группы с лигандным окружением.
- 3. Теоретический расчет электронных спектров поглощения исследуемых комплексов.

Описание работы

На данный момент, комплексы, обладающие *термически активированной замедленной* флюоресценцией (thermally activated delayed fluorescence, TADF), являются наиболее перспективными электро-люминофорами⁽³⁾. Ключевым фактором реализации механизма TADF является близкое расположение нижних синглетных и триплетных возбуждённых состояний (до ~1000 см⁻¹), позволяющее установиться равновесию между уровнями разной мультиплетности, и использовать не только синглетные, но и триплетные уровни в процессах излучения.

Таблица 1. XRD структуры комплексов 1-5. Анионы [Ph4B]⁻, молекулы растворителя и атомы водорода опущены для наглядности.

Для выполнения поставленных задач применялись следующие методы:

- 1. Полноэлектронные волновые функции комплексов рассчитывали методом DFT со скалярным релятивистским гамильтонианом DKH2 и гибридным функционалом B3LYP. Также использовали составной релятивистский базисный набор: для атомов Cu, Ag, Au базисный набор WTBS; для остальных атомов (H, C, N и P) модифицированный для релятивистских расчетов базисный набор DKH-def2-TZVP.
- 2. Рассчитанные волновые функции анализировали при помощи метода QTAIM пакета Multiwfn версии 3.7.
- 3. Положения максимумов полос поглощения и силы осцилляторов электронных переходов были рассчитаны методом зависящей от времени теории функционала плотности (TD-DFT) с использованием гибридного функционала DKH2-B3LYP с базисным набором из пункта 1 (использовано RIJCOSX приближение).

Квантовохимические расчёты выполнялись с использованием программного пакета Orca 5.0.4 на базе вычислительного кластера ИВЦ НГУ.

Результаты

Исследование координационных связей

Электронная структура и связующие взаимодействия были проанализированы для XRD геометрии комплексов 1-5 с использованием процедуры QTAIM. Таблица 2 показывает, что для комплексов 1-3 длины координационных связей (как M–P, так и M–C, M = Cu, Ag) близки или немного короче (до ~0.1 Å) суммы ковалентных радиусов соответствующих атомов. В комплексах 4 и 5 только длины связей Au–C близки к сумме ковалентных радиусов. В комплексе 4, как упоминалось выше, тетрафосфиновый лиганд проявляет асимметричную координацию с более коротким расстоянием, близким к сумме ковалентных радиусов (2.43 Å), и увеличенным расстоянием, достигающим 2.8 Å в одном из хелатных колец. В комплексе 5 асимметрия хелатирующих колец возрастает, и одно из расстояний Au–P достигает 3.24 Å. Тем не менее, даже в последнем случае (3, -1) КTC был локализован, и было обнаружено нековалентное взаимодействие ($/Vb//Gb \sim 1$) между атомами Au и P.

Таблица 2. Экспериментальные и расчетные длины координационных связей [a] (r_b , Å) в комплексах 1-5, суммы ковалентных радиусов связанных атомов (Σr_{cov} , Å), топологические дескрипторы QTAIM (электронная плотность (ρ_b), ее лапласиан ($\Delta \rho_b$) и отношение потенциалов плотности энергии / V_b / и кинетической G_b (/ V_b // G_b) в критических точках связи (КТС), [b], порядки связи Майера (Р).

	Bond	r _b		Σ	р	P $\rho_b = \nabla^2 \rho_b$		$ V_h /G_h$	
		XRD	B97-D3	Δr _{cov}	P	ρ _b	$V^2 \rho_b$	v _b / G _b	
1	Cu–P	2.30 ÷ 2.33	2.29 ÷ 2.33	2.39	0.27÷0.18	$0.075 \div 0.077$	$0.17 \div 0.18$	1.35 ÷ 1.36	
	Cu–C	1.94, 1.96	1.93,1.95	2.08	0.21, 0.13	0.107	0.38	1.29	
2	Ag–P	$2.48 \div 2.54$	2.46 ÷ 2.56	2.52	0.35÷0.28	0.060 ÷ 0.066	$0.14 \div 0.15$	1.27 ÷ 1.30	
	Ag–C	2.11, 2.13	2.11, 2.12	2.21	0.41,0.32	$0.094 \div 0.098$	$0.55 \div 0.34$	1.24 ÷ 1.25	
3	Ag–P	2.478	2.46 ÷ 2.58	2.52	0.28÷0.21	0.067	0.16	1.30	
	Ag–C	2.097	2.10, 2.12	2.21	0.29	0.101	0.35	1.26	
4	Au–P	2.27 ÷ 2.45	2.31, 2.31	2 43	0.57	0.079 ÷ 0.110	$0.16 \div 0.17$	1.37 ÷ 1.53	
		2.74 ^[d]	2.95, 2.98	2.13	~0.20 ^[d]	$0.047^{[d]}$	$0.11^{[d]}$	1.21 ^[d]	
	Au–C	2.02 ÷ 2.11	2.05	2.12	0.28, 0.20	$0.111 \div 0.117$	$0.35 \div 0.37$	1.30 ÷ 1.31	
5	Au–P	2.29 ÷ 2.59	2.31, 2.30	2 13	0.57÷0.20	$0.060 \div 0.108$	0.13 ÷ 0.18	1.28 ÷ 1.51	
		3.24 ^[d]	2.92, 3.03	2.75	<0.1 ^[d]	0.020 ^[d]	0.04 ^[d]	1.04 ^[d]	
	Au–C	1.99 ÷ 2.03	2.05	2.12	0.28,012	$0.130 \div 0.140$	$0.41 \div 0.42$	1.34 ÷ 1.37	

^[a] Оптимизация геометрии была выполнена на уровне B97-D3/def2-TZVP (с ЕСР для Au). ^[b] На основе газофазных расчетов DKH2-B3LYP в рентгеновской геометрии; ρ_b и $\Delta \rho_b$ приведены в а.е. (в e/a_0^3 и e/a_0^5 , соответственно).

Топологический анализ QTAIM показывает, что все координационные связи (М–Р и М–С) с длинами, меньшими или немного превышающими Σr_{cov} , характеризуются умеренными электронными плотностями (0.06–0.14), довольно большими и положительными значениями их лапласиана (0.34–0.55) и отрицательными электронными плотностями энергии в КТС. Эти значения характерны для донорно–акцепторных связей, включающих М-центры с кажущейся замкнутой оболочкой. Более того, для каждого комплекса значения ρ в КТС для М–С–связей значительно выше, чем для М-Р-связей, что указывает на более высокие энергии первых.

Кроме того, геометрия комплексов 1-5 была оптимизирована на уровне B97-D3/def2-TZVP в метиленхлориде. Можно видеть (таблица 2), что в комплексах 1-3 длины оптимизированных связей М–С близки к таковым в кристаллической структуре. В то же время в обоих комплексах 4 и 5 оптимизация приводит к выравниванию связей Au–C. Следует отметить, что в целом после оптимизации геометрия комплексов 4 и 5 становится более симметричной, а именно с одной короткой (2.31 Å) и одной длинной (2.97±0.06 Å) связью Au–P вокруг каждого катиона Au. В то же время, даже самые длинные связи Au–P (3.03 Å в оптимизированной и 3.23 Å в рентгеновской структурах из 5) все еще намного короче суммы радиусов VdW (4.12 Å), что согласуется с результатами анализа QTAIM (таблица 2).

Теоретический расчет электронных спектров поглощения

На рисунке 1 показана область спектра комплекса **1** в ближней ультрафиолетовой и видимой областях в растворе ацетонитрила, а также результаты расчетов методом TD-DFT. Эти расчеты были выполнены с учетом растворителя CH₃CN и для структуры, оптимизированной в том же растворителе. Видно, что расчеты достаточно хорошо согласуются с экспериментальным спектром. Следует отметить, что четыре перехода в возбужденные состояния S1 – S4 вносят вклад в длинноволновую полосу с максимумом при 26800 см⁻¹ (373 нм).

Рисунок 1. Экспериментальные EAS в CH₃CN (черный) и рассчитанные на уровнях TD-B3LYP/def2-TZVP положения и силы осцилляторов (f, правая ось) электронных переходов (синие полосы) для комплекса **1**.

Рисунок 2. (а) Экспериментальные твердотельные EAS в виде функции Кубелки-Мунка (черная кривая) и рассчитанные на уровне TD-B3LYP/def2-TZVP положения и силы осцилляторов (f, правая ось) электронных переходов для комплекса **1** (черные столбцы), а

также для левого (синие столбцы) и правого (красные полосы) фрагменты из 1 (схема 1). (b) электронные переходы (a – d) и соответствующие молекулярные орбитали (HOMO, HOMO-1 и LUMO, LUMO+1), которые доминируют в длинноволновых электронных возбуждениях комплекса 1.

Рассмотрим эти длинноволновые переходы более подробно, основываясь на аналогичных расчетах для рентгеновской структуры 1 (рисунок 2). Рисунок 2a демонстрирует еще лучшее соответствие между спектром твердого тела и расчетами по сравнению со спектром раствора (рисунок 1). Обратите внимание, что в волновой функции каждого из нижних возбужденных состояний (S1 - S4) доминирует один определяющий фактор (88-95%), что облегчает интерпретацию спектра. Эти детерминанты соответствуют перемещению электронов с одной из двух молекулярных орбиталей, близких по энергии, НОМО или HOMO-1 ($\Delta E = 0.21$ эВ), на LUMO или LUMO+1, которые также очень близки по энергии ($\Delta E = 0.13$ эВ). Энергетическая близость соответствующих МО-пар приводит к энергий переходов, что приводит к перекрытию близости полос поглощения соответствующих возбуждений и, следовательно, к образованию единой полосы поглощения в EAS. Обратите внимание, что основные вклады в НОМО и НОМО-1 дают разницу и сумму d-AOs катионов Cu. LUMO и LUMO+1 локализованы в основном на мостиковом лиганде, и основной вклад вносят π^* -молекулы бензольного кольца. Таким образом, все эти переходы относятся к типу MLCT.

Таблица 3. Энергии (*v*) и силы осциллятора (*f*) для переходов в четыре низших возбужденных синглетных состояния, рассчитанные на уровне TD-B3LYP/def2-TZVP (с ЕСР для Ag и Au), и рассчитанная разность энергий между нижними синглетными и триплетными состояниями для комплексов **1-5**, а также максимумы экспериментальных длинноволновых диапазонов в твердотельных EAS и коэффициента экстинкции в растворах CH₃CN комплексов **1, 2 и 4**.

Комплексы	1		2		3		4		5	
Переход	ν , cm ⁻¹	fa	ν , cm ⁻¹	fa	ν , cm ⁻¹	fa	ν , cm ⁻¹	fa	ν , cm ⁻¹	fa
$S_0 \rightarrow S_1$	24650	0.050	25135	0.099	23942	0.181	22749	0.118	20674	0.064
$S_0 \rightarrow S_2$	25515	0.060	25723	0.088	26173	0.004	23446	0.054	23919	0.018
$S_0 \rightarrow S_3$	26372	0.004	26981	0.002	26613	0	23655	0.001	26374	0.006
$S_0 \rightarrow S_4$	27365	0.007	27342	0.005	28293	0	24360	0.002	28856	0.000
v_{max}^{exp} , cm ⁻¹	26390 (379 nm)		26300 (380 nm)		_		25580 (391 nm)		_	
$arepsilon_{max}^{exp},\mathrm{M}^{-1}\mathrm{cm}^{-1},\Sigmaf_i$	2.6×10 ³ , 0.121		7.3 \[] 10 ³ , 0.194		-		5.6 10 ³ , 0.175		_	
$S_0 \rightarrow T_1$	23438	-	23670	-	22481	-	21550	-	19860	_
$S_0 \rightarrow T_2$	24170	_	23806	_	24455	_	21972	_	22793	_
$S_0 \rightarrow T_3$	25316	_	24808	_	24839	_	22288	_	23676	_
$S_0 \rightarrow T_4$	25892	_	24933	-	26790	-	23262	-	24918	_
ΔE_{ST} , cm ⁻¹	1212		1465		1461		1199		814	

^аСила осцилляторов рассчитана через матричные элементы дипольного момента перехода.

Расчеты TD-DFT также были проведены для комплексов 2-5, и полученные результаты демонстрируют хорошее соответствие эксперименту для всей серии комплексов (1-5). Фактически, мы выполнили два типа расчетов, которые дали схожие результаты. Первые расчеты были нерелятивистскими с использованием базисных наборов с ЕСР для Ag и Au (таблица 3). Во втором типе расчетов скалярно-релятивистские эффекты учитывались с использованием гамильтониана DKH2 и полностью электронных базисных наборов; процедура QDPT была использована для расчета энергетического разделения триплетных состояний и напряженностей осцилляторов для переходов S0 → Ti.

В таблице 3 обобщены результаты, полученные для комплексов 1-5 с использованием нерелятивистского гамильтониана. Обратите внимание, что, как и в случае комплекса 1, для 2-5 волновых функций нижних возбужденных состояний (S1 - S4) доминирует один определяющий фактор, соответствующий продвижению электронов от НОМО или НОМО–1 к LUMO или LUMO+1, и внешний вид этих МО качественно одинаков как и в комплексе 1 (рисунок 1b). Таким образом, приведенная выше интерпретация длинноволновой полосы поглощения применима ко всей серии комплексов 1-5, включая отнесение четырех переходов с наименьшей энергией к типу MLCT. Следует отметить, что для всех комплексов значения силы осциллятора (f) длинноволновых переходов (a) превышают значения f других переходов, два из которых являются очень низкими.

Таблица 4. Энергии (v) и мощности осцилляторов (f) для переходов в четыре низковозбужденных синглетных и триплетных состояния, рассчитанные на зависящем от времени уровне DKH2-B3LYP/DKH-def2-TZVP (полностью электронный базовый набор WTBS для Cu, Ag и Au), константы скорости излучения для низших синглетных и триплетных состояний. состояния, и разность энергий между низшими синглетным и триплетным состояниями комплексов 1-5.

Комплексы	1		2		3		4		5	
Переход	ν , cm ⁻¹	f^a	ν , cm ⁻¹	f^a	ν , cm ⁻¹	\mathbf{f}^{a}	ν , cm ⁻¹	f^a	ν , cm ⁻¹	f^a
$S_0 \rightarrow S_1$	25186	0.060	25882	0.086	24701	0.177	24337	0.117	21932	0.077
$k_{rad}^{S,calc},\mathrm{s}^{-1}$	2.85×10 ⁷		4.31×10 ⁷		8.08×10 ⁷		5.18×10 ⁷		2.77×10 ⁷	
$S_0 \rightarrow S_2$	26172	0.050	26476	0.097	27041	0.004	24799	0.049	24711	0.016
$S_0 \rightarrow S_3$	27134	0.005	27759	0.003	27508	0.000	25134	0.004	27623	0.007
$S_0 \rightarrow S_4$	28146	0.006	28219	0.004	29328	0.000	25639	0.001	29301	0.000
$S_0 \rightarrow T_1$	23952	$3.7 \cdot 10^{-6}$	24148	$3.3 \cdot 10^{-6}$	23166	$1.2 \cdot 10^{-7}$	23041	$1.8 \cdot 10^{-5}$	20995	$3.0 \cdot 10^{-5}$
$k_{rad}^{T,calc},\mathrm{s}^{-1}$	1.59×10 ³		1.44×10 ³		48.2		7.15×10 ³		9.89×10 ³	
$S_0 \rightarrow T_2$	24605	$8.0 \cdot 10^{-6}$	24486	$8.4 \cdot 10^{-7}$	25063	$7.7 \cdot 10^{-4}$	23268	$2.6 \cdot 10^{-5}$	23426	$4.3 \cdot 10^{-5}$
$S_0 \rightarrow T_3$	26078	$4.6 \cdot 10^{-5}$	24898	$2.3 \cdot 10^{-7}$	25709	0.000	23668	$1.3 \cdot 10^{-4}$	23736	$3.6 \cdot 10^{-5}$
$S_0 \rightarrow T_4$	26597	$1.7 \cdot 10^{-5}$	24996	$1.5 \cdot 10^{-6}$	27610	0.000	24424	$6.3 \cdot 10^{-3}$	25373	9.8.10-6
ΔE_{ST} , cm ⁻¹	1234		1734		1531		1296		937	

^а Силы осциллятора рассчитываются с помощью матричного элемента дипольного момента перехода; для переходов S0 \rightarrow Ti эти матричные элементы были рассчитаны с учетом спинорбитальной связи.

Из таблицы 4 видно, что результаты полностью электронных расчетов со скалярным релятивистским гамильтонианом аналогичны результатам, полученным при расчетах с нерелятивистским гамильтонианом и ЕСР. Однако в первом случае также были получены значения f для переходов S0 \rightarrow Ti. Для комплексов 1-3 значения интенсивности осциллятора для переходов S0 \rightarrow Ti примерно на 5-6 порядков ниже, чем для переходов S0 \rightarrow Si. Для комплексов 4 и 5 эта разница значительно меньше. В то же время, для переходов S0 \rightarrow T1 разница в f между комплексами 1-3 и комплексами Au (4, 5) составляет примерно один порядок величины, что коррелирует с разницей во времени их фосфоресценции (~130 мс для 4 и 5 и 1, 7-3 мс для 1-3). Таким образом, расчеты частично согласуются с экспериментом.

Эффект от использования кластера ИВЦ НГУ

Благодаря кластеру ИВЦ НГУ были произведены основные расчёты данной работы – полноэлектронные волновые функции основного состояния и возбуждённых комплексов.

Перечень публикаций, содержащих результаты работы

 Artem'ev A. V. et al. Toward highly efficient TADF-active Cu (i), Ag (i) and Au (i) carbene complexes using symmetry-based design strategy //Inorganic Chemistry Frontiers. 2024. DOI:10.1039/D4QI01996B (Импакт-фактор: 6.1)