Аннотация

Мы показали с помощью DFT расчетов, что производные 2-(2'аминофенил)бензотиазола являются подходящими фотокатализаторами в реакциях [2+2]фотоциклоприсоединения, протекающих через триплет-триплетный перенос энергии. Заместитель в молекуле pbt оказывает значительное влияние на результат реакции, что может быть связано с изменениями в вертикальном переходе $S_1 \leftarrow S_0$ и эффективностью взаимодействия фотокатализатора с субстратом.

Тема работы

Реакция [2+2] циклоприсоединения катализируемая 2-(2'-аминофенил)бензотиазолом и его производными.

Состав коллектива

Пылова Екатерина, аспирант НГУ

Lasorne Benjamin (соавтор статьи)

Конченко Сергей Николаевич (научный руководитель)

Jaroschik Florian (научный руководитель)

Научное содержание

Это исследование сосредоточено на 2-арилбензотиазолах, которые легко доступны и широко используются в качестве строительных блоков органических соединений. Эти соединения нашли применение в качестве лигандов в комплексах переходных металлов [1-8] и в разработке биологически активных молекул, включая противораковые агенты и инструменты визуализации [9-16]. Кроме того, они служат светоизлучающими компонентами в химических сенсорах [17-20] и в люминесцентных материалах, таких как белые светоизлучающие OLED, в основе работы которых лежат такие явления как эмиссия индуцированная агрегацией (AIE) или внутримолекулярный перенос протона в возбужденном состоянии (ESIPT) [21-24]. 2-фенилбензотиазол легко модифицируется как в бензотиазольном, так и в арильном фрагментах. В частности, в литературе уже описано, депротонирование орто-положения арильной группы для синтеза фотоактивных металлокомплексов (Ir, Ru, Pd), которые используются в различных фотокаталитических процессах [25-33]. Более того, введение функциональных групп, таких как -OH, -SH или - NHR, во 2-е положение арильной группы привлекает внимание из-за их потенциала создания дополнительных участков координации металлов [34,35].

Мы обнаружили каталитические свойства 2-(2'-аминофенил)бензотиазола в реакции [2+2] фотоциклоприсоединения, поэтому дальнейшие шаги нашего исследования были посвящены изучению факторов влияющих на фотокаталитический процесс.

Сначала рассмотрим механизм каталитической реакции [2+2] фотоциклоприсоединения, описанный в литературе [36-38]. Он представлен на Схеме 1. На схеме представлен предполагаемый маршрут этой реакции, описанный в литературе. Процесс начинается с образования некоего интермедиата за счет нековалентных взаимодействий катализатора и субстрата. После облучение на длине волны поглощения фотокатализатора, он переходит в возбужденное S₁ состояние, затем происходит интеркомбинационная конверсия и переход в состояние T₁. Дальше осуществляется триплет-триплетный перенос энергии, который ведет к образованию субстрата в возбужденном бирадикальном состоянии. Основная роль фотокатализатора заключается в переводе субстрата в такое триплетное состояние, т.к. напрямую данный процесс не идет из-за слишком большой разницы в энергии между соответствующими S_0 и S_1 уровнями субстрата. Последующее присоединение к бирадикалу олефина, интеркомбинационнная конверсия и циклизация приводит к образованию циклобутанового продукта.

Схема 1. Механизм реакции [2+2]фотоциктоприсоединения.

В качестве фотокатализаторов реакции (Схема 2) мы использовали производные pbt, в арильном кольце которых находились разные заместители (Таблица 1).

Схема 2. Реакция [2+2]фотоциклоприсоединения, изучаемая в данной работе.

Полученные результаты

Все квантово-химические расчеты были выполнены с использованием теории функционала плотности (DFT), как это реализовано в программном пакете Gaussian 16.[39] Все оптимизации геометрии для основных состояний были выполнены на уровне теории РВЕО-D3BJ/cc-pVTZ [40,41]. Вертикальные энергии перехода из основных состояний S₀ в синглеты S₁ были рассчитаны с помощью TD-PBE0/сс-рVTZ в равновесных геометриях S₀, в то время как энергии триплетов были рассчитаны с помощью TDA-PBE0/сс-рVTZ в оптимизированных равновесных геометриях T₁, с энергиями T₁, предоставленными относительно равновесных геометрий S₀, включая поправки на энергию нулевой точки точнее, (ZPE) (адиабатические переходы или, начала полос, учитывающие дифференциальный эффект ZPE).[42-47] Модель континуальной сольватации (SMD) использовалась в согласованном реакционном поле (SCRF) для моделирования эффекта растворителя дихлорметана (ε=8,93). Все оптимизированные геометрии соответствуют равновесным геометриям основного состояния (действительные положительные частоты).

Нам удалось рассчитать переходы S₀-S₁ и энергию триплетного уровня для субстрата и используемых катализаторов. Схема 2 отображает энергетическую диаграмму: катализаторы расположены по принципу от большего выхода циклобутанового продукта к меньшему выходу. Таблица 2 показывает более детальные данные, полученные из квантово-химических расчетов. Из этих данных можно сделать вывод, что хотя все производные pbt имеют энергию триплета, которая позволяет выступать в качестве фотокатализатора реакции [2+2] фотоциклоприсоединения при облучении видимым светом, однако лучшими фотокатализаторами являются те, у которых наименьшие вертикальные переходы S₀-S₁ и поглощение, которых находится в более красной области (Рисунок 1 и 2). Мы также оценили нековалентное взаимодействие субстрата и 2-NH₂-pbt, 3-NH₂-pbt и 4-NH₂-pbt с помощью программного пакета CREST, в качестве предоптимизационного шага, а затем оптимизировали в Gaussian16. На рисунках 3-5 показан π - π -стэкинг между ароматическими частями субстрата и фотокатализатора. В зависимости от природы заместителей и их положения в арильной части π-π-стэкинговые взаимодействия меняются, однако в любом случае не наблюдается существенной водородной связи между аминой группой и кето-группой субстрата. Орбитальные взаимодействия между субстратом и фотокатализатором пренебрежимо малы (Рисунок 6). Таким образом, мы показали, что производные 2-NH₂-pbt с донорными заместителями при аминогруппе, фотокатализаторами являются подходящими реакции [2+2]фотоциклоприсоединения.

Таблица 1. Экспериментальное поглощение (нм), испускание (нм) и рассчитанные синглетные и триплетные энергии (ккал·моль⁻¹) различных производных pbt.

R	λmax	λ _{max}	S1←S0	S1	T 1	Выход реакции.
	(abs)	(em)				%
Н	298 ^[17a]	363 ^[17a]	94.1	80.2	58.8	15
2-ОН	337 ^[17b]	517 ^{a[17b]}	87.2	76.3	57.6	15
2-OMe	308 ^[17c]	367 ^[17c]	92.9	77.7	57.6	30
2-NH ₂	365	430	79.0	70.4	55.1	60
3-NH ₂	298	415	82.8	71.7	54.9	27
4-NH ₂	332	395	85.5	73.8	54.5	26
2-NHMe	392 ^[17d]	458 ^[17d]	77.5	66.7	52.9	63
2-NH ⁱ Pr	395	450	74.4	66.6	52.7	70
2-NHBn	378 ^{b[17e]}	446 ^{b[17e]}	76.0	68.1	53.9	45
2-NMe ₂	300	550	76.6	59.7	52.3	44

2-NHAc	335 ^[17d]	565 ^{a[17d]}	85.3	74.4	56.9	34
2-NHTos	330 ^[17d]	555 ^{a[17d]}	91.6	76.6	57.8	30
2-NHBoc	340	540 ^a	84.4	74.1	56.7	40

[а] эмиссия соотвествующая ESIPT-процессу, [b] в MeOH.

субстрат

Схема 2. Анализ фотосенсибилизаторов на основе pbt в реакции [2+2] фотоциклоприсоединения с помощью рассчитанных переходов $S_1 \leftarrow S_0$, триплетных уровней, и выходов реакции [2+2]фотоциклоприсоединения.

Таблица 2. Рассчитанные энергии, TD-DFT энергия вертикальных переходов S₁, TDA-DFT (T₁←S₀) для оптимизированных геометрий.

	E(SCF) /	Энергия	Сила	переход Т1←S0, эВ
	лартри	вертикального перехода S ₁ , эВ	осциллятора	
2-NH ₂ -pbt	-1008.55093697	3.4259	f=0.4381	2.7231
MeNH-pbt	-1047.82257961	3.2445	f=0.4174	2.5936
ⁱ PrNH-pbt	-1126.38459900	3.2265	f=0.4144	2.5761
pbt	-953.219845409	4.0819	f=0.7962	3.0462
3-NH ₂ -pbt	-1008.54730779	3.5898	f=0.1468	2.8746
4-NH ₂ -pbt	-1008.54175361	3.7067	f=1.0703	2.7698
HO-pbt	-1028.41268660	3.7791	f=0.5710	2.9585
MeO-pbt	-1067.65905662	4.0298	f=0.5160	3.2116
AcNH-pbt	-1161.10325775	3.6991	f=0.5274	2.9249
TosNH-pbt	-1827.10740201	3.9741	f=0.4114	3.6187
BocNH-pbt	-1354.13036680	3.6578	f=0.5113	2.9159
BnNH-pbt	-1278.69534337	3.2974	f=0.4414	2.6504

Me ₂ N-pbt	-1087.07789541	3.3200	f=0.2429	2.7992
субстрат	-686.807169907	3.5049	f=0.0000	2.6446
субстрат, переход S2←S0, eV		3.6948	f=0.9942	

Рисунок 1. Кривые соотвествуют экспериментальным спектрам поглощения с концентрацией с=2·10⁻⁵ М в хлористом метилене, вертивальные полосы показывают указывают положения и силы осцилляторов (правая ось Y) электронных переходов S_n←S₀ (n=1–10) электронных переходов.

субстрат – 2-NH₂-pbt

Рисунок 2. Кривые соотвествуют экспериментальным спектрам поглощения с концентрацией с=2·10⁻⁵ М в хлористом метилене, вертивальные полосы показывают указывают положения и силы осцилляторов (правая ось Y) электронных переходов S_n←S₀ (n=1-10) электронных переходов.

Рисунок 3. Оптимизированная структура 2-NH2-pbt-субстрат.

Рисунок 4. Оптимизированная структура 3-NH2-pbt-субстрат.

Рисунок 5. Оптимизированная структура 4-NH₂-pbt-субстрат.

Рисунок 6. Соответствующие молекулярные орбитали в субстрате, субстрат – 2-NH2-pbt и 2-NH2-pbt.

Эффект от использования

Использование ресурсов кластера позволило провести квантово-химические расчеты в программных пакетах CREST и Gaussian16. Эти данные удалось получить только благодаря узлам очереди dl560g10q ИВЦ НГУ.

Перечень публикаций, содержащих результаты работы

Ekaterina Pylova, Benjamin Lasorne, Nathan McClenaghan, Gediminas Jonusauskas, Marc Taillefer, Sergey Konchenko, Alexis Prieto, Florian Jaroschik, Chem. Eur. J. 2024, e202401851.

Список литературы

[1] J. Ma, X. Zhang, X. Huang, S. Luo, E. Meggers, Nat. Protoc. 2018, 13, 605-632;

[2] Y. Grell, N. Demirel, K. Harms, E. Meggers, Organometallics 2019, 38, 3852-3859;

[3] V. A. Ilichev, T. V. Balashova, S. K. Polyakova, A. F. Rogozhin, D. S. Kolybalov, D. A. Bashirov, S. N. Konchenko, A. N. Yablonskiy, R. V. Rumyantcev, G. K. Fukin, M. N. Bochkarev, Russ. Chem. Bull. 2022, 71, 298-305;

[4] O. A. Mironova, A. A. Ryadun, T. S. Sukhikh, N. A. Pushkarevsky, S. N. Konchenko, New. J. Chem. 2023, 47, 3406-3416;

[5] T. S. Sukhikh, R. M. Khisamov, S. N. Konchenko, Symmetry 2023, 15, 157;

[6] M. Y. Afonin, P. A. Martynenko, D. S. Kolybalov, R. M. Khisamov, S. N. Konchenko, T. S. Sukhikh, Inorg. Chem. 2024, 63, 369-380;

[7] S. Ibrahim, N. Naik, C. Shivamallu, H. L. Raghavendra, A. A. Shati, M. Y. Alfaifi, S. E. I. Elbehairi, R. G. Amachawadi, S. P. Kollur, Inorg. Chim. Acta 2024, 559, 121792;

[8] M.-H. Wang, M.-Y. Tsai, Y.-C. Su, S.-T. Chiu, P.-H. Lin, J. Long, Cryst. Growth Des. 2024, 24, 422-431;

[9] M. Sagnou, B. Mavroidi, A. Shegani, M. Paravatou-Petsotas, C. Raptopoulou, V. Psycharis, I. Pirmettis, M. S. Papadopoulos, M. Pelecanou, J. Med. Chem. 2019, 62, 2638-2650;

[10] E. N. Djuidje, S. Sciabica, R. Buzzi, V. Dissette, J. Balzarini, S. Liekens, E. Serra, E. Andreotti, S. Manfredini, S. Vertuani, A. Baldisserotto, Bioorg. Chem. 2020, 101, 103960;

[11] S. Mokesch, K. Cseh, H. Geisler, M. Hejl, M. H. M. Klose, A. Roller, S. M. Meier-Menches, M. A. Jakupec, W. Kandioller, B. K. Keppler, Front. Chem. 2020, 8, 209;

[12] M. J. Ramaiah, D. Karthikeyan, S. Mathavan, R. B. R. D. Yamajala, S. Ramachandran, P. J. Vasavi, N. V. Chandana, Environ. Toxicol. Pharmacol. 2020, 79, 103415;

[13] Z. Zhan, Z. Su, L. Chai, C. Li, R. Liu, Y. Lv, Anal. Chem. 2020, 92, 8285-8291;

[14] N. C. Kuznik, V. Solozobova, N. Jung, S. Gräßle, Q. Lei, E. M. Lewandowski, R. Munuganti, A. Zoubeidi, Y. Chen, S. Bräse, A. C. B. Cato, ACS Chem. Biol. 2021, 16, 2103-2108;

[15] Q. Sun, Y. Wang, Q. Fu, A. Ouyang, S. Liu, Z. Wang, Z. Su, J. Song, Q. Zhang, P. Zhang, D. Lu, Angew. Chem. Int. Ed. 2021, 60, 4841-4848; Angew. Chem. 2021, 133, 4891-4898;

[16] Z.-H. Xu, H. Gao, N. Zhang, W. Zhao, Y.-X. Cheng, J.-J. Xu, H.-Y. Chen, Anal. Chem. 2021, 93, 1686-1692;

[17] Y. Liu, B. Feng, X. Cao, G. Tang, H. Liu, F. Chen, M. Liu, Q. Chen, K. Yuan, Y. Gu, X. Feng, W. Zeng, J. Anal. Chem. 2019, 144, 5136-5142;

[18] O. Sadek, L. A. Galán, F. Gendron, B. Baguenard, S. Guy, A. Bensalah-Ledoux, B. Le Guennic, O. Maury, D. M. Perrin, E. Gras, J. Org. Chem. 2021, 86, 11482-11491;

[19] P. He, Y. Chen, X.-N. Li, Y.-Y. Yan, C. Liu, Dalton Trans. 2023, 52, 128-135;

[20] P. He, Y. Chen, X.-N. Li, Y.-Y. Yan, C. Liu, Chemosensors 2023, 11, 177;

[21] Y.-X. Hu, X. Xia, W.-Z. He, H.-J. Chi, Y. Dong, G.-Y. Xiao, Y.-L. Lv, X. Li, D.-Y. Zhang, Dyes Pigm. 2019, 166, 254-259;

[22] D. Liu, Q. Ding, Y. Fu, Z. Song, Y. Peng, Org. Lett. 2019, 21, 2523-2527;

[23] R. Paul, S. Chandra Shit, H. Mandal, J. Rabeah, S. S. Kashyap, Y. Nailwal, D. B. Shinde, Z. Lai, J. Mondal, ACS Appl. Nano Mater. 2021, 4, 11732-11742;

[24] Y. Song, L. Hu, Q. Cheng, Z. Chen, H. Su, H. Liu, R. Liu, S. Zhu, H. Zhu, J. Mater. Chem. 2022, 10, 6392-6401;

[25] C. Yang, F. Mehmood, T. L. Lam, S. L.-F. Chan, Y. Wu, C.-S. Yeung, X. Guan, K. Li, C. Y.-S. Chung, C.-Y. Zhou, T. Zou, C.-M. Che, Chem. Sci. 2016, 7, 3123-3136;

[26] Z.-G. Niu, J. Chen, P. Tan, W. Sun, Y.-X. Zheng, G.-N. Li, J.-L. Zuo, Dalton Trans. 2018, 47, 8032-8040;

[27] Z.-J. Yao, N. Lin, X.-C. Qiao, J.-W. Zhu, W. Deng, Organometallics 2018, 37, 3883-3892;

[28] X.-C. Qiao, D.-C. Qiu, N. Lin, J.-W. Zhu, W. Deng, Z.-J. Yao, Appl. Organomet. Chem. 2019, 33, e4875;

[29] J. Yang, F. Zhang, X. Dong, B. Yu, M. Zhang, D. Wei, Z. Li, B. Wei, C. Zhang, S. Li, G. Cao, B. Zhai, New. J. Chem. 2019, 43, 4272-4281;

[30] V. Mdluli, S. Diluzio, J. Lewis, J. F. Kowalewski, T. U. Connell, D. Yaron, T. Kowalewski, S. Bernhard, ACS Catal. 2020, 10, 6977-6987;

[31 D. Gómez de Segura, R. Lara, M. Martínez-Junquera, E. Lalinde, M. T. Moreno, Dalton Trans. 2022, 51, 274-285;

[32] T. Kitamura, K. Yamanishi, S. Inoue, Y.-N. Yan, N. Yano, Y. Kataoka, M. Handa, T. Kawamoto, Eur. J. Inorg. Chem. 2022, 2022, e202200259;

[33] H. Zhang, C. Liu, J. Zhang, C.-x. Du, B. Zhang, Organometallics 2022, 41, 1381-1390;

[34] M. A. Katkova, A. P. Pushkarev, T. V. Balashova, A. N. Konev, G. K. Fukin, S. Y. Ketkov, M. N. Bochkarev, J. Mater. Chem. 2011, 21, 16611-16620;

[35] T. V. Balashova, M. E. Burin, V. A. Ilichev, A. A. Starikova, A. V. Marugin, R. V. Rumyantcev, G. K. Fukin, A. N. Yablonskiy, B. A. Andreev, M. N. Bochkarev, Molecules 2019, 24, 2376;

[36] F. Strieth-Kalthoff, F. Glorius, Chem., V. 6, 8, 2020, P. 1888-1903;

[37] A. Prieto, F. Jaroschik, Curr. Org. Chem., 2022, 26(1);

[38] J. Großkopf, T. Kratz, T. Rigotti, and T. Bach, Chem. Rev., 2022, 122, 2, 1626–1653;

[39] Gaussian 16, Revision C.01: M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. V. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. J. Bearpark, J. J. Heyd, E. N. Brothers, K. N. Kudin, V. N. Staroverov, T. A. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. P. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman, D. J. Fox, Gaussian Inc., Wallingford CT, 2019;

[40] M. J. G. Peach, D. J. Tozer, J. Phys. Chem. A 2012, 116, 9783-9789;

[41] F. Trani, G. Scalmani, G. Zheng, I. Carnimeo, M. J. Frisch, V. Barone, J. Chem. Theory Comput. 2011, 7, 3304-3313;

[42] T. H. Dunning, Jr., J. Chem. Phys. 1989, 90, 1007-1023;

- [43] R. A. Kendall, T. H. Dunning, Jr., R. J. Harrison, J. Chem. Phys. 1992, 96, 6796-6806;
- [44] D. E. Woon, T. H. Dunning, Jr., J. Chem. Phys. 1993, 98, 1358-1371;
- [45] K. A. Peterson, D. E. Woon, T. H. Dunning, Jr., J. Chem. Phys. 1994, 100, 7410-7415;
- [46] J. P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 1996, 77, 3865-3868;
- [47] S. Grimme, S. Ehrlich, L. Goerigk, J. Comput. Chem. 2011, 32, 1456-1465.