ОТЧЕТ О ПРОДЕЛАННОЙ РАБОТЕ С ИСПОЛЬЗОВАНИЕМ ОБОРУДОВАНИЯ ИВЦ НГУ

1. Тема работы

Оптимизация режимов стабилизации оптических стандартов частоты, стабилизированных по резонансам насыщенного поглощения.

2. Аннотация

В рамках формализма атомной матрицы плотности проводится теоретическое исследование наклона сигнала ошибки для стандартов частоты, основанных на резонансе насыщенного поглощения, возбуждаемого в поле двух встречных волн. Рассмотрены две схемы формирования сигнала ошибки: в первом случае модулируется частота только пробного поля, а во втором случае осуществляется частотная модуляция обеих волн. На основе проведенных расчетов определены оптимальные параметры гармонической модуляции, при которых наклон имеет максимальное значение.

3. Состав коллектива

- 1. Коваленко Дмитрий Валериевич, м.н.с. ИЛФ СО РАН.
- 2. Басалаев Максим Юрьевич, к.ф.-м.н., м.н.с., ИЛФ СО РАН.
- 3. Юдин Валерий Иванович, д.ф.-м.н., г.н.с., ИЛФ СО РАН.

4. Информация о грантах

Гранты РФФИ № 16-32-60050 мол_а_дк, № 17-02-00570; Грант Министерства образования и науки РФ № 3.1326.2017/4.6.

5. Научное содержание работы

5.1. Современное состояние проблемы

В настоящее время стандарты частоты и атомные часы на их основе являются важными и востребованными квантовыми устройствами, которые имеют широкий спектр приложений во многих областях науки (проверка фундаментальных теорий, высокопрецизионные измерения) и техники (навигация, системы связи и передачи информации) [1]. Одними из широко распространенных оптических (в том числе транспортируемых) стандартов частоты являются Не – Ne- и Nd: YAG-лазеры, стабилизируемые по резонансам насыщенного поглощения (РНП) на колебательно-вращательных переходах молекул метана и йода [2-4]. Преимуществами данных стандартов являются малые габариты в сочетании с достаточно высоким значением стабильности частоты (на уровне 10⁻¹⁵ за 100 с) [5-7]. Чаще всего РНП используется на практике в конфигурации из двух встречных световых волн одинаковой частоты (стоячая волна), взаимодействующих с общим переходом в атоме (молекуле). При этом, в спектре поглощения одной из волн (пробной) РНП наблюдается в виде узкого провала (в центре широкого доплеровского

контура), который может использоваться в качестве частотного репера для стабилизации оптических стандартов частоты [8].

Основной целью исследований, посвященных стандартам частоты, является повышение их стабильности, что может достигаться путем оптимизации режимов стабилизации частоты. В работах [9-13] показано, что наклон сигнала ошибки существенно зависит от параметров гармонической частотной модуляции (индекса и частоты модуляции), используемой в системах стабилизации. Данный наклон является одним из основных параметров, определяющих метрологические характеристики (стабильность и точность) частотных стандартов [14]. Поэтому важной задачей является максимизация наклона. Однако детальное теоретическое исследование данного вопроса, которое требует нахождения динамического решения для матрицы плотности, ранее не проводилось. В настоящей работе мы восполняем этот пробел, используя для вычислений недавно разработанный нами метод [15], который позволяет конструировать точное периодическое решение уравнения для матрицы плотности без применения Фурье-анализа. При этом мы численно рассчитываем сигнал ошибки в широком диапазоне параметров частотной модуляции лазерного поля и находим оптимальные режимы стабилизации частоты, для которых сигнал ошибки имеет максимальный наклон.

1. Ludlow A.D., Boyd M.M., Ye J., Peik E., Schmidt P.O. // Rev. Mod. Phys. 2015. V. 87. P. 637.

2. Летохов В.С., Чеботаев В.П. Нелинейная лазерная спектроскопия сверхвысокого разрешения. М.: Наука, 1990. 512 с.; Letokhov V.S., Chebotayev V.P. Nonlinear Laser Spectroscopy. Berlin: Springer-Verlag, 1977. 466 р.

3. Губин М.А., Киреев А.Н., Пнев А.Б., Тюриков Д.А., Шелестов Д.А., Шелковников А.С. // Вестник МГТУ им. Н.Э. Баумана. Сер. Приборостроение. 2011. Т. S2. С. 199.

4. Скворцов М.Н., Охапкин М.В., Невский А.Ю., Багаев С.Н. // Квант. электрон. 2004. Т. 34. С. 1101.

5. Goncharov A.N. et al. // J. Appl. Phys. B. 2004. V. 78. P. 725.

6. Zang E.J. et al. // J. IEEE Transactions on Instrumentation and Measurement. 2007. V. 56. P. 673.

7. Губин М.А., Киреев А.Н., Конященко А.В., Крюков П.Г., Таусенев А.В., Тюриков Д.А., Шелковников А.С. // Квант. электрон. 2008. Т. 38. С. 613.

8. Rieger T., Volz T. Doppler – Free Saturation Spectroscopy. [Электронный ресурс] Режим доступа:

http://www.ph.tum.de/studium/praktika/fopra/text/userguide-05.en.pdf.

9. Барашев В.А., Семибаламут В.М., Титов Е.А. // Квант. электрон. 1979. Т. 6. С. 261.

10. Bjorklund G.C., Levenson M.D. // Appl. Phys. B. 1983. V. 32. P. 145.

11. Jaatinen E. // Opt. Commun. 1995. V. 120. P. 91.

12. Курбатов А.А., Луговой А.А., Титов Е.А. // Опт. и спектр. 2006. Т. 100. С. 400.

13. Eble J.F., Schmidt-Kaler F. // Appl. Phys. B. 2007. V. 88. P. 563.

14. Riehle F. Frequency Standards: Basics and Applications. John Wiley & Sons, Inc, 2006. 540 р.; Фриц Р. Стандарты частоты: принципы и приложения. Физматлит, 2009. 511 с.

15. Yudin V.I., Taichenachev A.V., Basalaev M.Yu. // Phys. Rev. A. 2016. V. 93. P. 013820.

5.2 Подробное описание работы, включая используемые материалы

В качестве модели рассматривается взаимодействие двухуровневой системы газа атомов (молекул) (Рис. 1) с частотно-модулированным полем двух встречных волн (пробная волна + волна накачки):

$$E(t) = E_1 e^{-i(\omega t - kz + \Phi_1(t))} + E_2 e^{-i(\omega t + kz + \Phi_2(t))} + \text{K.c.};$$

$$\Phi_{1,2}(t) = \mu_{1,2} \sin(f_m t),$$
(1)

где E_1 , E_2 есть амплитуды пробной волны и волны накачки соответственно, ω – частота электромагнитного поля, k – волновое число, f_m – частота модуляции, $\mu_{1,2}$ – индексы модуляции пробной волны и волны накачки соответственно.

Рис. 1. Схема двухуровневой квантовой системы

Атомная среда предполагается достаточно разреженной, что позволяет пренебречь эффектами межатомного взаимодействия и решать задачу в одноатомном приближении. Также рассматривается случай достаточно нагретых атомов (например, при комнатной температуре), что позволяет пренебречь интерференцией пробного и накачивающего полей. Учитывается только одномерное движение атома вдоль оси z, то есть вектор скорости атома имеет вид: $\mathbf{v} = (0, 0, v_z)$. Для математического описания взаимодействия атомов с резонансным электромагнитным полем используется стандартный формализм атомной матрицы плотности:

$$\hat{\rho}(t) = \sum_{j,k} \left| j \right\rangle \rho_{jk}(t) \left\langle k \right|, \tag{2}$$

где j,k = 1,2. В этом случае динамика двухуровневой системы в резонансном приближении с учётом только первых пространственных гармоник описывается системой квантово-механических уравнений на матричные компоненты ρ_{jk} :

$$\begin{cases} \frac{\partial}{\partial t} \rho_{11} = \gamma_{sp} \rho_{22} + i(\Omega_{1}^{*} \rho_{21}^{(1)} - \rho_{12}^{(1)} \Omega_{1}) + i(\Omega_{2}^{*} \rho_{21}^{(2)} - \rho_{12}^{(2)} \Omega_{2}); \\ \frac{\partial}{\partial t} \rho_{22} = -\gamma_{sp} \rho_{22} + i(\Omega_{1} \rho_{12}^{(1)} - \rho_{21}^{(1)} \Omega_{1}^{*}) + i(\Omega_{2} \rho_{12}^{(2)} - \rho_{21}^{(2)} \Omega_{2}^{*}); \\ \frac{\partial}{\partial t} \rho_{21}^{(1)} = -\gamma_{opt} \rho_{21}^{(1)} + i[\delta_{1}(t) - kv_{z}]\rho_{21}^{(1)} + i\Omega_{1}(\rho_{11} - \rho_{22}); \\ \frac{\partial}{\partial t} \rho_{21}^{(2)} = -\gamma_{opt} \rho_{21}^{(2)} + i[\delta_{2}(t) + kv_{z}]\rho_{21}^{(2)} + i\Omega_{2}(\rho_{11} - \rho_{22}); \\ \rho_{12} = \rho_{21}^{*}; \\ \mathrm{Tr}\{\hat{\rho}\} = \rho_{11} + \rho_{22} = 1. \end{cases}$$

$$(3)$$

 $\delta_{1,2}(t) = \delta + \partial \Phi_{1,2}(t) / \partial t = \delta + \Delta_{1,2} \cos(f_m t) \quad \text{есть}$ Здесь законы модуляции отстройки $\delta = \omega \cdot \omega_0$ частоты поля ω от частоты перехода ω_0 для пробного поля и накачивающего поля соответственно, $\Delta_{1,2} = \mu_{1,2} f_m$ – амплитуды модуляции пробной волны и волны накачки соответственно, v_z – проекция скорости атома (молекулы) на ось z. Далее, $\Omega_1 = d_{21}E_1 / \hbar$ и $\Omega_2 = d_{21}E_2 / \hbar$ есть частоты Раби для перехода $|1
angle \leftrightarrow |2
angle$ (d_{21} есть приведенный матричный элемент для перехода $|1\rangle \leftrightarrow |2\rangle$), γ_{sp} есть скорость спонтанного распада верхнего уровня $|2\rangle$, общая скорость декогерентизации (спонтанная, γ_{opt} есть столкновительная, пролетная) оптического перехода $|1\rangle \leftrightarrow |2\rangle$.

В качестве исследуемого сигнала рассматривается поглощение пробной волны, которое в приближении оптически тонкой среды определяется как:

$$A(t, kv_{z}) = 2 \operatorname{Im} \{ \Omega_{1}^{*} \rho_{21}^{(1)}(t, kv_{z}) \}.$$
(4)

Для стабилизации частоты обычно используется техника синхронного детектирования. В данной задаче это приводит к следующему выражению для сигнала ошибки как функции от отстройки δ:

$$S_{\rm err}(\delta) = \frac{1}{T} \frac{k}{\sqrt{\pi}\omega_{\rm D}} \int_{0}^{T} \cos(f_m t + \phi) dt \int_{-\infty}^{+\infty} A(t, kv_z) e^{-\frac{(kv_z)^2}{\omega_{\rm D}^2}} d(v_z), \qquad (5)$$

где ω_D – доплеровская ширина спектральной линии, $T = 2\pi/f_m$ есть период модуляции, $\cos(f_m t + \phi)$ есть опорный сигнал, ϕ есть фазовый сдвиг опорного сигнала (фаза синхронного детектирования) по отношению к законам модуляции отстройки $\delta_{1,2}(t)$. При $\phi = 0$ сигнал ошибки можно определить, как синфазный, а для $\phi = -\pi/2$ – квадратурный.

Типичный вид сигнала ошибки (5) представлен на рисунке 2 и имеет форму дисперсионной кривой. Наклон кривой в центре линии определяется как:

$$K = \tan(\alpha) = \frac{\partial S_{\text{err}}}{\partial \delta} \bigg|_{\delta=0}.$$
 (6)

Относительная стабильность частоты пропорциональна величине $|K|/N(f_m)$, где $N(f_m)$ есть спектральная плотность шумов на частоте f_m . В данной задаче необходимо исследовать и максимизировать величину |K|, которая зависит от конкретных параметров теоретической модели { $\Omega_1, \Omega_2, \mu_1, \mu_2, f_m, \phi, \gamma_{sp}, \gamma_{opt}, \omega_D$ }.

Рис. 2. Схематическое изображение сигнала ошибки $S_{err}(\delta)$

5.3 Полученные результаты

Были рассмотрены два разных варианта гармонической частотной модуляции лазерного поля: 1) $\mu_1 = \mu$, $\mu_2 = 0$ (модулируется частота только пробной волны) и 2) $\mu_1 = \mu_2 = \mu$ (осуществляется одинаковая модуляция частоты как пробного поля, так и поля накачки, которая образует частотномодулированную стоячую волну). Все расчеты были проведены при доплеровской ширине $\omega_D = 250\gamma_{sp}$, соответствующей переходу в молекуле йода I₂ на длине волны $\lambda \approx 532$ нм. Наклон |K| сигнала ошибки (11) для заданных индекса и частоты модуляции можно максимизировать путем выбора оптимальной фазы ф_{орt} опорного сигнала. На рисунках 3 и 4 представлены рассчитанные зависимости наклона сигнала ошибки |K|_{opt} (см. Рис. 3а и Рис. 4а) и соответствующей ему оптимальной фазы фор (см. Рис. 36 и Рис. 46) от параметров модуляции (µ, fm). Как видно из приведенных рисунков, зависимость наклона от параметров модуляции для обоих вариантов имеет вид параллельных «хребтов». При этом главный «хребет» (то есть с наибольшим $|K|_{opt}$) вытянут в области высоких частот вдоль линии с индексом модуляции $\mu \approx 1.1$ для первого варианта (т.е. когда гармонически модулируется частота только пробного поля) и $\mu \approx 0.7$ для второго варианта (случай частотно-модулированной стоячей волны).

Соответствующая этой области оптимальная фаза опорного сигнала близка к $-\pi/2$, то есть в области высоких частот максимум наклона наблюдается для квадратурного сигнала ошибки. Для двух рассматриваемых вариантов модуляции частоты максимальные значения наклона $|K|_{\text{max}} = \max\{|K|_{\text{opt}}\}$ сопоставимы, однако достигаются при различных параметрах модуляции и фазах опорного сигнала. Для первого случая |K|max соответствует точке с $\mu_{\rm opt} \approx 1.3, f_{m \, {\rm opt}} \approx 1.1 \gamma_{\rm sp}$ и фазе $\phi_{\rm opt} \approx -0.78$ рад $\approx -45^{\circ}$, а для второго случая – $\mu_{\rm opt} \approx 1.4, \quad f_{m \, {\rm opt}} \approx 0.6 \gamma_{\rm sp}$ и фазе $\phi_{\rm opt} \approx -0.94$ рад $\approx -54^{\circ}$. Таким образом, режимы стабилизации, при которых достигается $|K|_{\text{max}}$, оптимальные промежуточной области между синфазным $(\phi = 0)$ находятся В И квадратурным ($\phi = -\pi/2$) сигналами ошибки для обоих вариантов частотной модуляции поля двух встречных волн.

Рис. 3. Зависимость (а) наклона сигнала ошибки $|K|_{opt}$ и (б) соответствующей оптимальной фазы ϕ_{opt} опорного сигнала от индекса μ и частоты f_m модуляции (модулируется частота только пробного поля). Положение максимального наклона отмечено крестиком. Численные параметры модели: $\gamma_{opt} = 0.5\gamma_{sp}$, $\omega_D = 250\gamma_{sp}$, $\Omega_1 = 0.1\gamma_{sp}$, $\Omega_2 = 0.5\gamma_{sp}$.

Рис. 4. Зависимость (а) наклона сигнала ошибки $|K|_{opt}$ и (б) соответствующей оптимальной фазы ϕ_{opt} опорного сигнала от индекса μ и частоты f_m модуляции (случай частотно-модулированной стоячей волны). Положение максимального наклона отмечено крестиком. Численные параметры модели: $\gamma_{opt} = 0.5\gamma_{sp}$, $\omega_D = 250\gamma_{sp}$, $\Omega_1 = 0.1\gamma_{sp}$, $\Omega_2 = 0.5\gamma_{sp}$.

6. Эффект от использования кластера в достижении целей работы

Осуществление теоретических расчетов, результаты которых представлены выше, фактически является невозможным на персональных компьютерах изза большого объема требуемой памяти, так и времени счета. Поэтому использование кластера, который позволяет проводить вычисления с высокой скоростью, является определяющим фактором для успешного достижения целей работы.

7. Публикация, содержащая результаты работы

Д.В. Коваленко, М.Ю. Басалаев, В.И. Юдин, "Оптимизация режимов стабилизации оптических стандартов частоты, основанных на резонансе насыщенного поглощения", Оптика и спектроскопия, том 124, 600-604 (2018). (Импакт-фактор: 0,76).