Тема работы:

Наномасштабная организация растворителя в металлоорганическом каркасе ZIF-8, исследованная методом ЭПР гибких β-фосфорилированных нитроксидов.

Состав коллектива:

Алимов Дмитрий Валерьевич, м.н.с. МТЦ СО РАН.

Порываев Артем Сергеевич, к.х.н., н.с. МТЦ СО РАН.

Информация о гранте:

РНФ №22-73-10239, рук. А.С. Порываев, 2022-2024.

Научное содержание работы:

1. Постановка задачи

Металлоорганические каркасы (МОF) привлекают все большее внимание как наносреды для химических реакций, особенно в области катализа. Знание специфики полостей МОГ имеет решающее значение во многих из этих случаев; тем не менее, получение их in situ остается очень сложной задачей. Мы сообщаем о первой прямой оценке кажущейся полярности и организации растворителя внутри полостей МОГ с использованием специального структурно гибкого спинового зонда. Стабильный β фосфорилированный нитроксильный радикал был включен в полости предполагаемого MOF ZIF-8 в следовых количествах. Спектроскопические свойства этого зонда зависят от локальной полярности, структурированности, жесткости и давления сцепления и могут быть точно отслежены с помощью спектроскопии электронного парамагнитного резонанса (ЭПР). Используя этот подход, мы экспериментально продемонстрировали, что полости голого ZIF-8 воспринимаются гостевыми молекулами как сильно неполярные внутри. Когда различные спирты заполняют полости, наблюдается значительная самоорганизация молекул растворителя, что приводит к более высокой кажущейся полярности в МОГ по сравнению с соответствующими объемными спиртами. Учет таких явлений наноорганизации может иметь решающее значение для оптимизации химических реакций в МОГ, а предлагаемая методология обеспечивает уникальные пути изучения полостей MOF внутри in situ, тем самым способствуя их различным применениям.

2. Подробное описание работы, включая используемые алгоритмы

Чтобы подтвердить, что вращение вокруг связи C—N радикала является основным фактором, влияющим на значения AP, мы провели ряд расчетов DFT. Мы рассчитали зависимость A_P от $\cos^2(\theta)$ при вариациях других геометрических параметров (длин связей, углов и диэдральных углов).

3. Полученные результаты

Во всех случаях корреляция между A_P и cos²(θ) сохранялась, а отклонения были малыми. Наблюдаемое упорядочение растворителя является важным эффектом для проведения реакций в ZIF-8, поскольку структура и свойства (такие как полярность) среды активного центра могут иметь решающее значение для усиления/ингибирования определенных путей реакции. Более того, зависящая от полярности стабилизация

определенных переходных состояний оказывает большое влияние на эффективность ферментативных реакций и селективных катализаторов.

6. Эффект от использования кластера в достижении целей работы.

Был предложен и подтвержден новый подход к исследованию внутренней поверхности полостей МОГ с использованием β-фосфорилированных нитроксидов и ЭПР-спектроскопии. Эти радикальные зонды могут быть захвачены в следовых количествах внутри полостей МОГ во время синтеза и предоставить множество уникальной информации. Этот подход применим как для голых МОГ, так и для МОГ с адсорбированными/пропитанными гостевыми молекулами. В частности, константы сверхтонкого взаимодействия на ядрах 14N и 31P радикала очень чувствительны к локальной полярности; поэтому такие материалы радикал@МОГ позволяют получать значения локальной кажущейся полярности в полостях MOF in situ при соответствующих условиях. Все эти преимущества были продемонстрированы с использованием одного из самых привлекательных МОГ в настоящее время – ZIF-8. Используя радикал, чувствительный к микроокружению, мы экспериментально доказали, что полость ZIF-8 неполярна. Также мы определили, что пропитка ZIF-8 различными спиртами приводит к резкому изменению кажущейся полярности внутри полости (т. е. полярности, ощущаемой растворенными веществами) с неполярной на высокополярную. Примечательно, что в случаях метанола, этанола и изопропанола кажущаяся полярность внутри ZIF-8 оказалась выше, чем в объемном растворителе. В случаях метанола и этанола она даже выше, чем в любом объемном органическом растворителе. Это было обосновано наноупорядочением молекул спирта внутри полости ZIF-8, обусловленным гидрофобными взаимодействиями.

Перечень публикаций, содержащих результаты работы

1. Artem S. Poryvaev, Aleksandr A. Efremov, Dmitry V. Alimov. Nanoscale solvent organization in metal—organic framework ZIF-8 probed by EPR of flexible β-phosphorylated nitroxides// Chemical Science, 2024, Vol. 15, No. 5, pp. 5268-5276. doi: 10.1039/D3SC05724K. Импакт-фактор журнала 2024 = 8.4.