Отчёт о проделанной работе с использованием оборудования ИВЦ НГУ

1. Аннотация

Проблема вязкого трения существенно затрудняет разработку эффективных микросистем для промышленного применения, например, в химическом анализе или охлаждении микроэлектроники. Для того, чтобы существенно продвинуться в области увеличения пропускной способности микроканалов и применении их в инженерных областях, важно разработать ряд методик, позволяющих, наиболее точно моделировать физические процессы внутри микроканалов. В отличие от обычной гидродинамики в микрофлюидике граничные условия являются более существенным фактором, влияющим на течение. В работе проведено экспериментальное исследование и трехмерное численное моделирование потока в прямоугольном микроканале с гладкими стенками и гидравлическим диаметром 149 мкм. Предложен способ моделирования течения в микроканале при неизвестном распределении напряжений сдвига на границах микроканала.

2. Тема работы

Уменьшение перепада давления в микроканале за счёт поверхностных эффектов.

3. Состав коллектива

- 1. Глуздов Дмитрий Сергеевич Аспирант физического факультета университета НГУ кафедры неравновесных процессов, форма обучения очная, специальность 01.04.14 Теплофизика и теоретическая теплотехника. Лаборатория интенсификации процессов теплопереноса 6.6 института теплофизики СО РАН, м.н.с. Контакты: gluzdov1@yandex.ru, d.gluzdov@g.nsu.ru, 8-953-790-60-03.
- 2. Гатапова Елизавета Яковлевна Научный руководитель к.ф.-м.н, старший научный сотрудник. Контакты руководителя: gatapova@itp.nsc.ru, 8-913-464-66-79.

4. Информация о гранте

Работа выполняется для кандидатской диссертации.

5. Научное содержание работы

1. Постановка задачи

Изучить возможные поверхностные эффекты на границе жидкой и твёрдой фаз, исследовать их влияние на поток жидкости. Создать или подобрать достаточно точную физическую модель для предсказания влияния поверхностных эффектов на поток жидкости. Оптимизировать поверхность твёрдой фазы микроканала с целью минимизации перепада давления.

2. Современное состояние проблемы

Оптимизация конструкции микрофлюидных систем требует четкого понимания течения жидкости как в ламинарном, так и в турбулентном режимах. Жидкость перемещается по микроканалам в таких устройствах, как Lab-on-Chip, системах охлаждения, микронасосах и аналитических устройствах, а также в фотолитографии, 3D-печати и течении жидкости через пористые среды [1-7].

За последние десятилетия было уделено много внимания уменьшению гидравлического сопротивления в микроканалах [8-12].

Одним из перспективных методов уменьшения гидравлического сопротивления в микроканалах является изменение топологии поверхности [8-15], суть данного метода заключается в применении канавок, бороздок, гидрофобных покрытий и газа для уменьшения сдвигового напряжения на границу и уменьшения гидравлического сопротивления в микроканале, в целом. Например, в работе [8] было достигнуто уменьшение гидравлического сопротивления в микроканале на 40% благодаря добавлению на стенки микроканала гидрофобного покрытия методом фотолитографии.

- 1. O. du Roure, A. Lindner, E. N. Nazockdast, and M. J. Shelley, "Dynamics of flexible fibers in viscous flows and fluids," Annu. Rev. Fluid Mech. 51, 539–572 (2019).
- 2. N. Kavokine, R. R. Netz, and L. Bocquet, "Fluids at the nanoscale: From continuum to subcontinuum transport," Annu. Rev. Fluid Mech. 53, 377–410 (2021).
- 3. J. Singh, A. Montesinos-Castellanos, and K. D. Nigam, "Process intensification for compact and micro heat exchangers through innovative technologies: A review," Ind. Eng. Chem. Res. 58, 13819–13847 (2019).
- 4. N. Convery and N. Gadegaard, "30 years of microfluidics," Micro Nano Eng. 2, 76–91 (2019).
- 5. M. E. Steinke and S. G. Kandlikar, "Single-phase liquid friction factors in microchannels," Int. J. Therm. Sci. 45, 1073–1083 (2006).
- 6. D. B. Tuckerman and R. F. W. Pease, "High-performance heat sinking for VLSI," IEEE Electron Device Lett. 2, 126–129 (1981).
- 7. J. Mo, Y. Ding, N. Xiang, S. Zhu, J. Zeng, K. Bi, J. Ma, J. Sha, and Y. Chen, "Fluid release pressure for micro-/nanoscale rectangular channels," J. Appl. Phys. 127, 114302 (2020).
- 8. J. Ou, B. Perot, and J. P. Rothstein, "Laminar drag reduction in microchannels using ultrahydrophobic surfaces," Phys. Fluids 16, 4635–4643 (2004).
- 9. J. P. Rothstein, "Slip on superhydrophobic surfaces," Annu. Rev. Fluid Mech. 42, 89–109 (2010).
- 10. S. Raayai-Ardakani and G. H. McKinley, "Geometric optimization of riblettextured surfaces for drag reduction in laminar boundary layer flows," Phys. Fluids 31, 053601 (2019).
- 11. M. Z. Hossain and J. M. Floryan, "On the role of surface grooves in the reduction of pressure losses in heated channels," Phys. Fluids 32, 083610 (2020).
- 12. C. Lee, C. Choi, and C. Kim, "Superhydrophobic drag reduction in laminar flows: A critical review," Exp. Fluids 57, 176 (2016).
- 13. F. Feuillebois, M. Z. Bazant, and O. I. Vinogradova, "Effective slip over superhydrophobic surfaces in thin channels," Phys. Rev. Lett. 102, 026001 (2009).
- 14. E. S. Asmolov, A. V. Belyaev, and O. I. Vinogradova, "Drag force on a sphere moving toward an anisotropic superhydrophobic plane," Phys. Rev. E 84, 026330 (2011)
- 15. T. J. Kim and C. Hidrovo, "Pressure and partial wetting effects on superhydrophobic friction reduction in microchannel flow," Phys. Fluids 24, 112003 (2012).

3. Подробное описание работы, включая используемые алгоритмы

В данной работе моделировалось трёхмерное ламинарное течение в прямоугольном микроканале с сечением 108х242 мкм². Использовалось ПО Ansys Fluid, выбран оптимальный метод решения SIMPLE с параметрами невязки до 10⁻⁷. Гексагональная сетка с размером элементов до 4 мкм. В качестве начальных и граничных условий задавался перепад давления и сдвиговое напряжение на границах микроканала.

Численное моделиривание базировалось на эксперименте. При помощи параметрического расчёта в численной модели находился усреднённый параметр сдвигового напряжения, который соответствовал соответствующей экспериментальной точке, отвечающей перепаду давления и расходу жидкости.

Из эксперимента и численного моделирования были определены коэффициенты сопротивления в микроканале. Коэффициент сопротивления из эксперимента определён по формуле Дарси-Вейсбаха:

$$f = \Delta p \left(\frac{D}{l}\right) / \left(\frac{\rho \cdot V^2}{2}\right)$$

Коэффициент сопротивления в численном расчёте определён после нахождения сдвигового напряжения из соотношения:

$$\tau = \frac{1}{8} \rho f V |V|$$

На рисунке 1 показано сравнение коэффициентов сопротивления, полученных экспериментальным и численным способом, в зависимости от числа Рейнольдса. На рисунке видно насколько близкие получились значения.

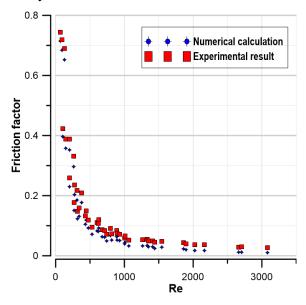


Рисунок 1 - Сравнение коэффициентов сопротивления, полученных экспериментальным и численным способом, в зависимости от числа Рейнольдса

Однако, не смотря на достаточно точно полученные интегральные величины, в распределении скоростей были обнаружены ошибки в углах микроканала. На рисунке 2 а) показано, что при задании усредненного сдвигового напряжения на всех границах, течение в углах микроканала получается реверсивным, что не соответствует физике.

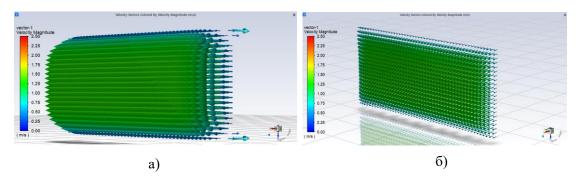


Рисунок 2 – Re = 500. a) Течение в микроканале при равномерно заданном сдвиговом напряжении на границах. б) Течение в микроканале при функциональном задании сдвигового напряжения на границах.

Для решения данной проблемы было предложено задавать сдвиговое напряжение на границах следующим образом:

$$\tau = \frac{\tau_w}{\langle f(y, z) \rangle} \cdot f(y, z)$$

где τ_w – среднее сдвиговое напряжение на границах, которое можно получить, например, из оценки коэффициента сопротивления в микроканале. f(y,z) – это функция распределения сдвигового напряжения на границах, которую можно получить решив ту же задачу, но с условием прилипания на границах. $\langle f(y,z) \rangle$ – это среднее значение функции распределения сдвигового напряжения.

При задании сдвигового напряжения предложенным методом, получается исправить реверсивное течение в углах (рисунок 2 б).

4. Полученные результаты

Численно исследовано течение в прямоугольном микроканале. На основе экспериментальных данных по перепаду давления для ламинарного трехмерного потока рассчитаны и детально проанализированы напряжения сдвига на границах. Результаты показывают, что напряжение сдвига для численного расчета может быть оценено с использованием коэффициента сопротивления. Для получения более точного результата, напряжение сдвига должно быть задано функциональной зависимостью на границах, предложен метод задания такой функциональной зависимости.

6. Эффект от использования кластера в достижении целей работы

В ходе работы использовался доступ к лицензионному пакету Ansys Fluid flow, до 60Гб для постоянного хранения, 20Гб для временного и до 16Гб оперативной памяти. Доступ к лицензии позволил выполнять работу в коммерческом ПО Ansys для научных исследований, что, в свою очередь, очень сильно помогло сэкономить время получения численных результатов.

7. Перечень публикаций, содержащих результаты работы

1. Gluzdov, Dmitry S., and Elizaveta Ya Gatapova. "Friction reduction by inlet temperature variation in microchannel flow." Physics of Fluids 33.6 (2021): 062003. (Импакт фактор: 3.521)

2. Gluzdov, D. S., and E. Ya Gatapova. "A friction factor in rectangular microchannel of 100 μm depth." *Journal of Physics: Conference Series*. Vol. 1677. No. 1. IOP Publishing, 2020. (Импакт фактор: 0.55)