# ОТЧЕТ О ПРОДЕЛАННОЙ РАБОТЕ С ИСПОЛЬЗОВАНИЕМ ОБОРУДОВАНИЯ ИВЦ НГУ

#### 1. Аннотация

За последние несколько лет представление о карбонатах как солях состава МСО3 или  $M'_2CO_3$  с треугольниками [ $CO_3$ ] в кристаллических структурах было достаточно карбонатов были предсказаны и успешно синтезированы расширено. Помимо кристаллические структуры со стехиометрией  $M_3CO_5$ ,  $M_2CO_4$  и  $MC_2O_5$ . В настоящем исследовании, основанном на теории функционала плотности и алгоритмах предсказания кристаллической структуры, мы обнаружили новую структуру СаС2О5, а именно Сапирокарбонат с моноклинной симметрией Cc, который является одним из возможных агентов глобального углеродного цикла. Для этой структуры характерны изолированные группы  $[C_2O_5]$ , состоящие из двух треугольников  $[CO_3]$ , связанных через общий атом кислорода. Поле термодинамической устойчивости пирокарбоната кальция по отношению к реакции разложения на карбонат кальция и углекислый газ начинается при давлении 10 ГПа. При повышении давления до 21 ГПа структура Са-пирокарбоната трансформируется в недавно синтезированную тетрагональную модификацию І-42d, в структуре которой углерод находится в  $sp^3$ -гибридизированном состоянии, а тетраэдры [CO<sub>4</sub>] образуют изолированные пирамидальные  $[C_4O_{10}]$  анионные группы. При 59 ГПа в интервале температур 0–2500 K  $CaC_2O_5$ -I-42d претерпевает фазовый переход в  $CaC_2O_5$ -Fdd2 с каркасной структурой тетраэдров [СО<sub>4</sub>]. При дальнейшем сжатии примерно до 80 ГПа структура каркаса трансформируется в слоистую, С2 и Рс.

### 2. Тема работы

Превращения  $CaC_2O_5$  при высоких давлениях полный структурный тренд от двойных треугольников  $[CO_3]$  через изолированную группу тетраэдров  $[CO_4]$  к каркасным и слоистым структурам.

#### 3. Состав коллектива

- 1. Литасов Константин Дмитриевич; Новосибирский Государственный Университет, в.н.с.
- 2. Инербаев Талгат Муратович, Институт Геологии и Минералогии им. В.С. Соболева CO РАН, с.н.с.
- 3. Гаврюшкин Павел Николаевич; Новосибирский Государственный Университет, Институт Геологии и Минералогии им. В.С. Соболева СО РАН; доцент, с.н.с.

- 4. Сагатов Нурсултан; Институт Геологии и Минералогии им. В.С. Соболева СО РАН, н.с.
- 5. Бехтенова Алтына Ербаяновна; Новосибирский Государственный Университет, Институт Геологии и Минералогии им. В.С. Соболева СО РАН; н.с.
- 6. *Сагатова Динара*; Новосибирский Государственный Университет, Институт Геологии и Минералогии им. В.С. Соболева СО РАН; м.н.с.
- 7. Банаев Максим Валерьевич; Новосибирский Государственный Университет; магистрант
- 8. Донских Катерина Георгиевна; Новосибирский Государственный Университет, студент

### 4. Научное содержание работы

#### 4.1. Постановка задачи

Проведение первопринципных расчетов по предсказанию кристаллических структур  $CaC_2O_5$  и построение фазовых PT-диаграмм.

## 4.2. Современное состояние проблемы

На сегодняшний день на основе результатов квантово-химических расчетов показано, что ортокарбонаты щелочноземельных металлов могут образовываться в результате реакции карбоната с оксидом соответствующего щелочноземельного металла выше давления 5-20 ГПа (Sagatova et al., 2020; Gavryushkin et al., 2021). Впоследствии успешно синтезированы ортокарбонаты обоих типов стехиометрии, а именно Са<sub>2</sub>СО<sub>4</sub>-Pnma (Binck et al., 2022), Sr<sub>2</sub>CO<sub>4</sub>-Pnma (Laniel et al., 2021), Sr<sub>3</sub>CO<sub>5</sub>-I4/mcm (Spahr et al., 2021). В системе СаО-СО2, помимо реакции карбоната с оксидом, изучалась также реакция карбоната с диоксидом углерода (CaCO<sub>3</sub> + CO<sub>2</sub>) (Yao et al., 2018). В результате было показано, что в данной системе выше 33 ГПа стабилизируется структура  ${\rm CaC_2O_5}$ -Pc. Согласно результатам Yao et al. (2018), соединение  $CaC_2O_5$  претерпевает следующую серию фазовых переходов:  $Pc \rightarrow Fdd2$  при 38 ГПа,  $Fdd2 \rightarrow Pc$  при 72 ГПа и  $Pc \rightarrow C2$  при 82 ГПа. Влияние температуры на стабильность CaC<sub>2</sub>O<sub>5</sub> рассматривалось только при 0 и 2000 K, при этом P-T границы полиморфных переходов в этой системе не определялись. Во всех полиморфных модификациях  $CaC_2O_5$  атомы углерода находятся в тетраэдрическом окружении атомами кислорода. Однако, в отличие от Са<sub>3</sub>СО<sub>5</sub> и Са<sub>2</sub>СО<sub>4</sub>, в структурах  $CaC_2O_5$  тетраэдры [ $CO_4$ ] полимеризуются и образуют двумерные слои в структурах Pc и C2 и трехмерный каркас в структуре Fdd2. Недавно реакция  $CaCO_3$  с  $CO_2$  была экспериментально исследована при лазерном нагреве ячеек с алмазными наковальнями (Konig et al., 2022). В результате была получена новая структура  $CaC_2O_5$ -*I*-42d в диапазоне давлений 34—45 ГПа и температур 2000—3000 К. В данной структуре анионные группы представлены в виде пирамидальных групп [ $C_4O_{10}$ ].

Возможность полимеризации треугольников [CO<sub>3</sub>] в структуре карбоната ранее не рассматривалась. Недавно такая возможность была показана для структуры  $SrC_2O_5-P2_1/c$ , синтезированной при 30 ГПа (Spahr et al., 2022). В этой структуре два треугольника [CO3] соединены через общую вершину, как и в случае пиробората  $Sr_2[B_2O_5]$ . По аналогии с боратами такая структура была названа пирокарбонатной.

Открытие новой стабильной модификации  $CaC_2O_5$ -I-42d И возможное существование пироструктуры CaC<sub>2</sub>O<sub>5</sub> послужило для нас мотивацией к выполнению как расчетов по предсказанию кристаллической структуры, так и расчетов свободных энергий Гиббса фаз  $CaC_2O_5$  для определения P-T фазовой диаграммы этого соединения в диапазоне давлений от атмосферного давления до 100 ГПа. Предполагая возможность образования CaC<sub>2</sub>O<sub>5</sub> в результате реакции карбоната кальция и углекислого газа в Земли и нижней переходной зоны мантии, была также термодинамическая устойчивость новых фаз по отношению к основным минералам мантии.

## 4.3. Подробное описание работы, включая используемые алгоритмы

Поиск стабильных кристаллических структур  $CaC_2O_5$  с помощью программных пакетов USPEX и AIRSS. Все расчеты проведены в рамках теории функционала плотности, в качестве программного пакета использовался VASP. Эффекты обменной корреляции рассматривались в приближении обобщенного градиента по схеме PBE.

Для учета температурного влияния и расчета свободных энергий Гиббса использовался метод динамики решетки в рамках квазигармонического приближения. Расчеты дисперсии фононов и свободной энергии выполнены с помощью программы PHONOPY. Силовые константы в реальном пространстве были рассчитаны с использованием подходов суперячейки и конечного смещения. Свободные энергии Гельмгольца были рассчитаны для семи различных объемов для каждой фазы, а затем были скорректированы на тепловое расширение с использованием квазигармонического приближения, в результате чего были получены свободные энергии Гиббса для обоих режимов давления.

### 4.4. Полученные результаты

Результаты по поиску новых стабильных кристаллических структур  $CaC_2O_5$  свидетельствуют о стабильности новых модификаций Fdd2 и Cc при 0 и 15  $\Gamma\Pi a$ . При 25 и 50  $\Gamma\Pi a$  была предсказана недавно синтезированная модификация I-42d и структурно

близкие модификации Fd-3m и C2-1. При давлениях 75 и 100 ГПа были выявлены ранее предсказанные структуры Fdd2 и C2.

Для определения поля стабильности были проведены расчеты зависимостей энтальпии от давления каждой модификации  $CaC_2O_5$ , а также энтальпия ассоциации  $CaCO_3 + CO_2$ . Согласно полученным результатам, выше давления 9 ГПа энтальпия  $CaC_2O_5$ -Cc становится ниже таковой ассоциации  $CaCO_3$  (арагонит) +  $CO_2$ -II, что свидетельствует об энергетической устойчивости структуры  $CaC_2O_5$ -Cc относительно реакции разложения  $CaC_2O_5 \leftrightarrow CaCO_3 + CO_2$ . Выше 22 ГПа,  $CaC_2O_5$ -Cc трансформируется в структуру  $CaC_2O_5$ -C2-1. При 58 ГПа, модификация  $CaC_2O_5$ -Fdd2 становится более энергетически выгодной относительно  $CaC_2O_5$ -C2-1. Поле стабильности модификации  $CaC_2O_5$ -Fdd2 ограничено давлением 76 ГПа, где наблюдается фазовый переход в структуру  $CaC_2O_5$ -C2, которая сохраняет свою устойчивость плоть до давлений 100 ГПа.

В новой предсказанной структуре  $CaC_2O_5$ -Cc анионные группы  $[C_2O_5]$  образованы двумя треугольниками  $[CO_3]$ , полимеризованными через общий атом кислорода, подобно тому, как это происходит в пирокарбонате стронция. Поэтому  $CaC_2O_5$ -Cc далее будем называть Ca-пирокарбонатом. Структуру Ca-пирокарбоната можно представить в виде алмазоподобной подрешетки атомов кальция c октаэдрическими и тетраэдрическими пустотами, заполненными группами  $C_2O_5$  (рис. 1a). В проекции (001) структуры  $CaC_2O_5$ -Cc хорошо видны гексагональные каналы подрешетки атомов кальция, заполненные группами  $[C_2O_5]$  двух разных ориентаций (рис. 16).

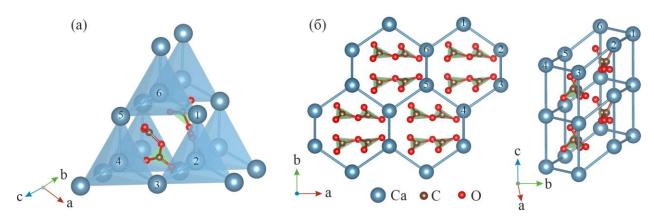



Рисунок 1. Кристаллическая структура пирокарбоната кальция  $CaC_2O_5$ -Cc.

С ростом давления  $sp^2$ -связанный углерод в структуре Са-пирокарбоната переходит в  $sp^3$ -гибридизированное состояние в высокобарических модификациях (*I*-42*d*, *Fdd*2, *Pc* и *C*2) (рис. 2). Все структуры высокого давления  $CaC_2O_5$  имеют различный тип полимеризации тетраэдров [ $CO_4$ ] (рис. 2). Так, пирамидальные анионные группы [ $C_4O_{10}$ ]

(I-42d) замещаются сначала полимеризованными тетраэдрами [CO<sub>4</sub>], связанными в 3D-каркас в структуре Fdd2, а затем 3D-каркас трансформируется в 2D-слои в структурах Pc и C2 (рис. 2).

На рисунке 2 представлена рассчитанная фазовая P-T диаграмма  $CaC_2O_5$ . Согласно полученным результатам с учетом температурного эффекта Са-пирокарбонат стабилизируется относительно реакции разложения на карбонат кальция и диоксид углерода выше давления 10 ГПа. С дальнейшим повышением давления до 21 ГПа, наблюдается фазовый переход в  $Cc \rightarrow I$ -42d (C2-1) при 0 К. С увеличением температуры до 2500 К давление фазового перехода возрастает до 29 ГПа.

Выше 59 ГПа,  $CaC_2O_5$ -*I*-42*d* трансформируется в структуру  $CaC_2O_5$ -*Fdd*2 и данное давление незначительно изменяется с увеличением температуры.  $CaC_2O_5$ -*Fdd*2 переходит в структуру  $CaC_2O_5$ -*Pc* при 75 ГПа, а затем  $CaC_2O_5$ -*Pc* переходит в структуру  $CaC_2O_5$ -*C*2 при 80 ГПа и 0 К. Фазовый переход *Fdd*2  $\rightarrow$  *C*2 установлен при 78 ГПа при 514 К и давлении этого перехода постепенно увеличивается до 90 ГПа с повышением температуры до 2500 К. Поле *P-T* стабильности  $CaC_2O_5$ -*Pc* сужается с повышением температуры и выше 514 К при 78 ГПа эта фаза становится неустойчивой.

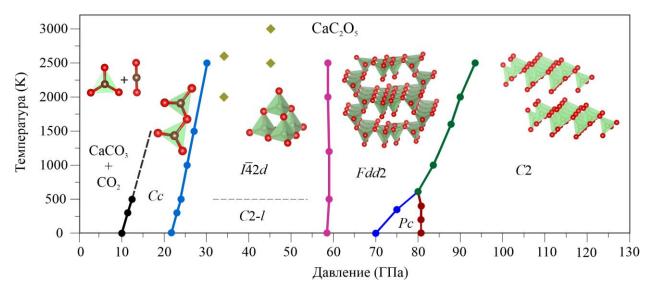



Рисунок 2. Фазовая P-T-диаграмма  $CaC_2O_5$ . Зелеными ромбами представлены условия синтеза модификации  $CaC_2O_5$ -I-42d (Konig et al., 2022).

# 5. Эффект от использования кластера в достижении целей работы

Кластер ИВЦ НГУ является основным кластером нашей группы, без использования ресурсов кластера достижение большинства результатов было бы технически невозможным.

## 6. Перечень публикаций

- <u>Sagatova, D.N.</u>, Sagatov, N.E., Gavryushkin, P.N., Banaev M.V., and Litasov, K.D. (2021) Alkali metal (Li, Na, and K) orthocarbonates: Stabilization of sp<sup>3</sup>-bonded carbon at pressures above 20 GPa. *Crystal Growth & Design*, DOI: 10.1021/acs.cgd.1c00652. Q1
- Konig, J., Spahr, D., Bayarjargal, L., Gavryushkin, P.N., <u>Sagatova, D.</u>, Sagatov, N., Milman, V., Liermann, H.-P., Winkler, B. (2022) Novel calcium *sp*<sup>3</sup> carbonate CaC<sub>2</sub>O<sub>5</sub>-*I*-42*d* may be a carbon host in Earth's lower mantle. *ACS Earth and Space Chemistry*, 6(1), 73-80. **Q2**
- <u>Sagatova, D.N.</u>, Gavryushkin, P.N., Sagatov, N.E., Banaev, M.V. (2022) High-pressure transformations of CaC<sub>2</sub>O<sub>5</sub> the full struc- tural trend from double [CO<sub>3</sub>] triangles through the isolated group of [CO<sub>4</sub>] tetrahedra to framework and layered structures. *Physical Chemistry Chemical Physics*. Under review.