Изучение особенностей пространственного строения и спектральных свойств полигетероатомных производных природных монотерпенов с использованием квантово-химических расчётов

Состав коллектива

Ткачев Алексей Васильевич — профессор кафедры органической химии ФЕН НГУ/заведующий Лабораторией терпеновых соединений НИОХ СО РАН, доктор химических наук, профессор (atkachev@nioch.nsc.ru)

Постановка задачи

Высокая конформационная подвижность производных терпенов приводит к возникновению особых сложностей при установлении пространственного строения молекул на основе анализа данных молекулярной спектроскопии. Причиной возникающих осложнений является конформационная неоднородность большинства производных и низкие барьеры взаимопревращений конформационных изомеров, что делает невозможным наблюдение и изучение отдельных форм молекул. Неизбежным следствием является необходимость выполнения молекулярного моделирования путём расчёта геометрии взаимопревращающихся форм и оценки их спектральных характеристик.

Современное состояние проблемы

Описанная проблема общеизвестна и решается с использованием современных адекватных расчётных методов квантовой химии.

Подробное описание работы, включая используемые алгоритмы

Квантово-химические расчёты (оптимизация геометрии и расчёт спектральных характеристик) выполнялись методом функционала плотности (DFT) с использованием функционалов PBE0 или CAM-B3LYP или M06 в базисах def2-SVP, def2-TZVP, def2-TZVPP, aug-cc-pVTZ, aug-cc-pVTZ-J или LANL2TZ(f) с использованием программного пакета ORCA¹.

Научное содержание работы

1. Необычная окраска продукта конденсации дипинодиазафлуорена с антрахиноном

При конденсации дипинодиазафлуорена 1 с антрахиноном получется соединение 2, которое в твёрдой фазе представляет собой оранжево-жёлтые кристаллы, которые при растворении в хлороформе дают пурпурный раствор с максимум поглощения при λ_{max} = 530 нм в электронном спектре. Объяснение этому феномену дано по результатм квантово-химических расчётов [1].

По данным расчётов (DFT, CAM-B3LYP/def2-TZVP) существует 3 стабильных конформации продукта 2, формы 2a, 2b и 2c:

¹ Neese, F. The ORCA program system. Wiley Interdiscip. Rev.: Comput. Mol. Sci. 2012, 2, 73–78.

Рачёт теплот образования в растворе хлороформа даёт разную заселённость этих форм при комнатной температуре: **2a** (19%), **2b** (21%) и **2c** (60%). Оценка вида электронных спектров поглощения показывает, что спектры складчатой формы **2a** и твист-форм **2b,c** должны сильно отличаться. Если для складчатой фомы **2a** макисмум поглощения самой длинноволновой полосы лежит на границе видимой и ультафиолетовой часи спектра, то для форм **2b,c** расчёт предсказывают полосу поглощения в зелёной части спектра ($\lambda_{max} = 510-520$ нм, Рис. 1), которая обеспечивает пурпурную окраску вещества.

Рис. 1 Экспериментальный электронный спектр поглощения хлороформного раствора соединия **2** (*1*) и расчётные спектры для форм **2b** (*2*), **2c** (*3*) и **2a** (*4*) по данным TD-DFT (CAM-B3LYP/def2-TZVP).

По данным монокристальной дифрактометрии соединение **2** в кристаллической фазе имеет складчатую форму **2a**, а при растворении в хлороформе устанавливается равновесие с участием твист-форм **2b** и **2c**, присутствие которых и обеспечивают пурпурное окрашивание раствора.

2. Необычный вид колебательных спектров производных дипинодиазафлуорена

Инфракрасные спектры дипинодиазафлуорена **1** и ряда его производных имеют общую отличительную особенность – очень интенсивную полосу поглощения в диапазоне 1392-1398 см⁻¹:

Расчётными методами показано (DFT BPE0/def2-TZVP), что появление этой интенсивной полосы связано с рядом специфических колебаний диазадипинофлуоренового фрагмента, которые характеризуются однотипными колебаниям диазафлуоренового ядра (Рис. 2) и различающиеся характером деформации пинанового фрагмента. Все эти колебания имеют очень близкие частоты колебаний (в пределах 10 см⁻¹) и в реальном спектре оказываются неразличимыми, накладываясь друг на друга и давая единственную интенсивную слегка уширенную линию асимметричной формы.

Рис. 2 Основные направления синхронного смещения атомов при скелетном колебатели диазадипинофлуореновой системы с частотоами 1392-1398 см⁻¹ (колебания пинанового фрагмента не показаны.)

Как видно из приведённой схемы движения атомов, при данном типе скелетных колебаний не затрагивается атом C-14, поэтому заместители при этом атоме углерода слабо влияют на частоту и интенсивность соответствующей ИК-полосы, и по этой причине полоса поглощения одинаковой интенсивности при 1392-1398 см⁻¹ появляется в ИК-спектрах всех соединений этой серии [2].

Особенности комплексообразования хлоридов палладия (II), цинка (II) и меди (I) с тиосемикарбазоном (–)-камфоры

Реакция хлоридов палладия (II), цинка (II) и меди (I) с тиосемикарбазоном (–)-камфоры приводит к образованию соответствующих комплексов, обладающих дозозависимой цитотоксическостью в отношении клеточной линия инвазивной аденокарциномы протоков молочной железы человека (MCF-7) [3]:

Если структуру комплексов палладия (II) и цинка (II) удалось установить методом рентгеноструктурного анализа и расчётными методами показать (DFT PBE0/aug-cc-pVTZ для атомов C, H, N, S, Cl, Zn, и Cu и LANL2TZ(f) для атома Pd), что комплексы палладия (II) и цинка (II) должны сохранять найденную структуру при переходе в растворы, то структуру комплекса меди (I), как раз демонстрирующего самую высокую цитотоксичность, спектроскопическими и рентгеновскими методами установить не удалось.

Квантово-химические расчёты показали параметров спектров ЯМР показали, что в растворах комплекс меди (I) должен существовать в форме, в которой атом S тиосемикарбазонового фрагмента координирован к двум атомам Cu(I). Такое возможно либо при образовании одномерных (линейных) полимерных цепей, либо при образовании циклоаддуктов CuLCl:

Полимерные комплексы должны быть нерастворимы, и их образование маловероятно, поскольку комплекс Cu(I) хорошо растворяется в органических растворителях. По данным расчётов, циклоаддукты (CuLCl)_n являются вполне устойчивыми структурами, причём образование тримера (n=3) должно быть эенргетически более выгодным:

Полученные расчётные данные подтверждены данными масс-спектрометрии высокого разрешения (ESI-HRMS).

4. Особенности образования люминесцирующих комплексов из хиральных лигандов ряда 2,2'-бипиридила

Новые хиральные лиганды с 2,2'бипиридиновым ядром L и L¹, построенные на основе молекул природных терпеновых углеводородов (+)-лимонена и (+)-3-карена соответственно, различаются характером замещения в шестичленном карбоцикле. Дополнительное замещение в части молекулы, далёкой от донорных атомов N, обеспечивающих координацию, оказывает, тем не менее, существенное влияние на структуру образующихся комплексов и их люминесценцию:

Только для комплекса [ZnLCl₂] удалось установить строение методом PCA. Строение остальных комплексов установлено по результатам сопоставления экспериментальных спектральных характеристик (ЯМР) с расчётными данными, полученными квантово-химическими методами.

Исследование конформационной подвижности методами квантовой химии (DFT BPE0/def2-TZVP, ECPs Cd) показало, что лиганды L и L¹ различаются по пространственному расположению N-ацетамидной группы относительно бипиридинового фрагмента:

В случае производного лимонена L самой стабильной является форма La, в которой возможна дополнительная координация иона металла с ацетамидой группой. В противоположность этому, для производного карена L^1 доминирует форма L^1a , в которой невозможна такого рода дополнительная координация.

Молекулярное моделирование комплексов показало, что дополнительная координация ацетамидной группы может осуществляться либо через образование водородной связи Cl - - - HN, либо как координация карбонильного кислорода к иону металла, либо за счёт координации амидного атома азота к металлу, а вклад разных форм для производных должен быть неодинаков и зависеть как от природы лиганда (L или L¹), так и от природы переходного металла (Zn или Cd).

Заселённость различных форм комплекса [CdLCl₂] при комнатной температуре:

Заселённость различных форм комплекса [ZnL¹Cl₂] при комнатной температуре:

Заселённость различных форм комплекса [CdL¹Cl₂] при комнатной температуре:

На основе полученных расчётных данных сформулированы схемы равновесий в растворах, что позволило исчерпывающе объяснить особенности спектральных характеристик синтезированных комплексных соединений [4]:

5. Поиск диагностических параметров для отнесения конфигурации терпеновых аминофосфонатов

Аминооксимы и их *О*-метиловые эфиры **2**, синтезируемые из природных монотерпеновых утлеводородов (–)-α-пинена (**1a**) и (+)-3-карена (**1b**), являются удобными синтетическими предшественниками для получения терпеновых α-аминофосфонатов **3** по реакции Кабачника-Филдса:

Получаемые таким синтезом α-аминофосфонаты **3** несут в структуре молекулы новый асимметрический атом углерода и образуются, как правило, в виде пары диастереометров, отнести конфигурацию которых невозможно на основании существующих приёмов и спектроскопических методов.

Квантово-химические расчёты (DFT PBE0/def2-TZVPP) позволили выявить особенности пространственного строения α-аминофосфонатов и определить главные диагностические параметры, характерные для α-аминофосфонатов определённой стереохимической конфигурации (DFT PBE0/aug-cc-pVTZ-J). Такими параметрами являются константы спин-спинового взаимодействия ¹*J*(¹³C-³¹P), которые, как оказалось

в явном виде зависят от пространственного строения, а именно — от величины двугранного угла между осью неподелённой пары электронов у атома N и направлением связи C—P:

Диаграмма, иллюстрирующая схему вычисления расположения оси неподелённой пары электронов на атоме N: эта ось определялась как биссектриса угла H—N—H.

Рассчитанные зависимости величины КССВ ¹*J*(¹³C-³¹P) от двугранного угла LP—N—C—P для ряда модельных соединений

Оказалось также, что и другие КССВ — ${}^{2}J({}^{13}\text{C-C-}{}^{31}\text{P})$ и ${}^{2}J({}^{1}\text{H-}{}^{13}\text{C-}{}^{31}\text{P})$ закономерно изменяются с величиной этого двугранного угла. Этих данных, однако, не достаточно для отнесения конфигурации, поскольку исследуемые терпеновые α -аминофосфонаты являются конформационно неоднородными субстратами, и для каждой формы молекулы расчётные константы ССВ должны различаться, что видно на примере одного из исследованных соединений:

После выполнения конформационного анализа, расчёта спектральных параметров для каждой конформации и усреднения данных с учётом заселённости форм получены значения констант ССВ, которые хорошо согласуются с экспериментальными данными для структур, конфигурация которых подтверждена рентгеноструктурными исследованиями.

В отличие от значений констант ССВ, расчётные значения химических сдвигов в спектрах ЯМР ¹Н согласовывались с экспериментом не лучшим образом. В ходе специального исследования установлено, что терпеновые α-аминофосфонаты в растворам малополярных органических растворителей склонны к образованию ассоциатов за счёт межмолекулярных водородных связей, в частности — H-связанных димеров. Различные варианты связывания изучены квантово-химическими методами (DFT M06/def2-SVP – CCl₄) и показано, что в растворе могут образовываться димерные структуры разного типа, различающиеся энергией водородных связей:

Расчётные значения частот валентных колебаний групп О—Н и N—Н как для свободных молекул, так и для Н-связанных димеров хорошо согласуются с экспериментальными данными, полученными методом ИК-спектроскопии (Рис. 3).

Рис. 3. Экспериментальный и расчетный ИК-спектры для 2-амино-пинокамфоноксима и расчетные ИК-спектры для димеров 1-4 аминофосфоната пинанового ряда в области 4000-2500 см⁻¹ (DFT M06/def2-SVP RIJCOSX def2 / J D3zero GridX6 в CCl4).

Эффект от использования кластера в достижении целей работы

Оптимизация геометрии и расчёт спектральных параметров исследованных молекул, многие из которых являются достаточно большими по меркам квантовой, даже методом функционала плотности (DFT) требует значительных вычислительных ресурсов (оперативной памяти и процессорного времени). Вычисления на кластере НГУ позволили выполнить молекулярное моделирование, которое было бы невозможно осуществить за разумное время при работе на обычных рабочих станциях.

Перечень публикаций, содержащих результаты работы

(во всех перечисленных публикациях Информационно-вычислительный центр Новосибирского государственного университета упомянут как место выполнения расчётов)

- [1] Eugene S. Vasilyev; Sergey N. Bizyaev; Vladislav Yu. Komarov; Alexey V. Tkachev Syntheses of chiral fused 4,5-diazafluorene–bis(nopinane) derivatives *Mendeleev Communications*. 2019. Vol. 29, No. 5 P. 584 586. DOI: 10.1016/j.mencom.2019.09.036 (IF=2.01).
- [2] Vasilyev, E. S.; Bizyaev, S. N.; Komarov, V. Yu.; Gatilov, Yu. V.; Tkachev, A. V. Chiral C2-Symmetric Diimines with 4,5-Diazafluorene Units *Molecules*. 2019. Vol. 24, No. 17 P. . DOI: <u>10.3390/molecules24173186</u> (IF=3.59).
- [3] Kokina, T. E.; Glinskaya, L. A.; Sheludyakova, L. A.; Eremina, Y. A.; Klyushova, L. S.; Komarov, V. Y.; Piryazev, D. A.; Tkachev, A. V.; Larionov, S. V. Synthesis, structure, and cytotoxicity of complexes of zinc(II), palladium(II), and copper(I) chlorides with (-)-camphor thiosemicarbazone *Polyhedron*. — 2019. — Vol. 163 — P. 121–130. DOI: 10.1016/j.poly.2019.02.020 (IF=2.284).
- [4] Kokina, Tatyana E.; Rakhmanova, Marianna I.; Shekhovtsov, Nikita A.; Glinskaya, Ludmila A.; Komarov, Vladislav Y.; Agafontsev, Alexander M.; Baranov, Andrey Y.; Plyusnin, Pavel E.; Sheludyakova, Liliya A.; Tkachev, Alexey V.; Bushuev, Mark B. Luminescent Zn(ii) and Cd(ii) complexes with chiral 2,2'-bipyridine ligands bearing natural monoterpene groups: synthesis, speciation in solution and photophysics *Dalton Trans.* — 2020. — Vol. 49 — P. 7552–7563. DOI: 10.1039/D0DT01438A (IF=4.174).
- [5] Marenin, Konstantin S.; Agafontsev, Alexander M.; Bryleva, Yuliya A.; Gatilov, Yuri V.; Glinskaya, Ludmila A.; Piryazev, Dmitry A.; Tkachev, Alexey V. Stereochemistry of the Kabachnik-Fields Condensation of Terpenic Amino Oximes with Aldehydes and Dimethyl Phosphite ChemistrySelect. — 2020. — Vol. 5, No. 25 — P. 7596–7604. DOI: 10.1002/slct.202002369 (IF=1.811).