Отчёт о проделанной работе с использованием оборудования ИВЦ НГУ

1. Аннотация

С помощью квантово-химических расчетов произведена попытка найти первое переходное состояние реакции каталитического твердофазного дегидрирования амминборана (NH₃BH₃) на биметаллическом кластере CoFe. Оптимизирована геометрия NH₃BH₃ и CoFe, теоретические данные сопоставлены с экспериментальными значениями. Полученные структуры были использованы для построения стартовой геометрии, необходимой для оптимизации первого переходного состояния. Результаты расчетов показали необходимость внесения изменений в методику поиска переходного состояния рассматриваемой реакции.

2. Тема работы

Исследование каталитического гидротермолиза амминборана

3. Состав коллектива

1. Горлова Анна Михайловна, студентка 2 курса магистратуры ФЕН НГУ

2. Комова Оксана Валентиновна, кандидат химических наук, научный сотрудник Группы исследования гидридных соединений ИК СО РАН

4. Информация о гранте

Работа не поддерживается грантом.

5. Научное содержание работы

5.1.Постановка задачи

Работа направлена определение твердофазного на механизма дегидрирования (термолиза) амминборана на катализаторе CoFe (биметаллический кластер), аналогично тому, как это было сделано в работе [1]. Предполагается, что полученные результаты позволят определить эффективность этого катализатора в каталитическом гидротермолизе амминборана, так как термолиз является одной из стадий этого процесса.

5.2.Современное состояние проблемы

Детальный механизм выделения водорода из амминборана (NH₃BH₃) до сих пор до конца не выяснен и требуются дополнительные квантовохимические исследования [2,3], несмотря на значительный прогресс в Большинство опубликованных изучении ЭТОГО процесса. расчетных механизмов являются достаточно умозрительными. Так, например, расчеты на «стандартном» уровне DFT/B3LYP «прямого» дегидрирования NH₃BH₃ с выделением BH₂NH₂ и H₂ дают разумную величину теплоты реакции (-6.6 ккал/моль), практически совпадающую с предсказаниями предельно высокого уровня теории в этой области – расчетов методом связанных CCSD(T). Однако кластеров расчетная энергия активации ДЛЯ мономолекулярного и межмолекулярного пути дегидрирования дает значительные величины: 38,5 и 35,1 ккал/моль, соответственно. Хотя эти величины близки к оценкам на предельно высоком уровне, такие барьеры барьер разрыва В-N связи (28,7 ккал/моль [2]), превышают что свидетельствует о более сложном пути реакции. Строение и состав промежуточных соединений дегидрирования АБ значительно отличаются в зависимости от того, в каких условиях проводится реакция (в твёрдой фазе или в жидкости) [4–10]. С использованием in-situ твёрдотельного ЯМР было показано, что образование диаммиаката диборана, [BH₂(NH₃)₂]BH₄, является необходимым первым шагом твердофазного дегидрирования АБ [5]. Эти результаты предполагают, что водород из АБ в органических растворителях выделяется по механизму реакции, отличающемуся от механизмов в твёрдой фазе и ионных жидкостях. Расчеты механизма образования ДАДБ показывают, что процесс инициируется продуктами развала AB, т.е. NH₃ и BH₃. Образование промежуточных соединений происходит за счет последовательного присоединения фрагментов (NH₃ и BH₃) по принципу взаимодействия льюисовских кислот и оснований. Энергия активации дальнейшего разложения этих соединений с выделением H₂ значительно меньше, чем в случае исходного АБ. Так, по расчетам на высоком уровне теории CCSD(T) дегидрирование ДАДБ идет со значительно более низкой энергией активации (около 20 ккал/моль) [3]. Видно, что для интересующего нас случая дегидрирования АБ в твердой фазе ключевым пунктом является предварительный разрыв B-N связи исходного AБ, что открывает возможность протекания взаимодействий: $NH_3BH_3 \rightarrow NH_3BH_2(\mu - H)BH_3 \rightarrow NH_3BH_3(\mu - H)BH_3(\mu - H)BH_3($ [BH₂(NH₃)₂]BH₄. Учитывая ионность диводородных связей и связи B-N, термолиз АБ в полярных растворителях (в т.ч. ионной жидкости) может протекать по другому маршруту, в т.ч. без образования ДАДБ. Возможно, этот механизм может реализовываться и при термолизе АБ, контактирующего с активной гетерогенной кислородсодержащей поверхностью. Для проверки этого предположения требуется проведение систематических расчетов по теории функционала плотности и соотнесение полученных результатов с экспериментальными закономерностями. Другим направлением работы также может быть расчет механизма каталитического термолиза амминборана. На данный момент представлены в основном экспериментальные работы, в которых не высказано никаких предположений о каталитической активности тех или иных соединений. Расчетных работ, в которых предложен механизм каталитического твердофазного разложения амминборана, единицы.

5.3.Подробное описание работы включая используемые алгоритмы

Для нахождения переходного состояния реакции твердофазного дегидрирования NH₃BH₃ в рамках теории функционала плотности (DFT) была проведена оптимизация геометрии молекулы NH₃BH₃ и биметаллического кластера CoFe. Все расчёты проводились в программном пакете ORCA.

Оптимизация геометрии, термохимия и расчет частот колебаний NH₃BH₃: без ограничений по симметрии, с мультиплетностью равной 1, использованием гибридного функционала PW91, базисного набора 6-311+G(d) и применением RIJCOSX приближения. Отрицательных частот колебаний не было получено, что говорит о достижении равновесной геометрии в ходе оптимизации.

Оптимизация геометрии кластера CoFe: без ограничений по симметрии, с мультиплетностью равной 2, использованием гибридного функционала PW91 и базисного набора 6-311+G(d).

Оптимизация переходного состояния реакции дегидрирования NH₃BH₃ на кластере CoFe проводилась с использованием гибридного функционала PW91, базисного набора 6-311+G(d) и применением RIJCOSX приближения. Для построения стартовой геометрии были использованы оптимизированные структуры NH₃BH₃ и CoFe.

Все расчеты проведены для газовой фазы.

5.4.Полученные результаты

Полученные в ходе оптимизации молекулы амминборана длины связей, углы и малликеновские заряды атомов были сопоставлены с полученными ранее другими исследователями экспериментальными и расчетными данными.

Рисунок 1 – Оптимизированная геометрия NH₃BH₃

Таблица 1. Длины связей и углы в молекуле NH₃BH₃, рассчитанные в ходе данной работы и полученные экспериментально

Связь/угол	Расчет (Å/°)	Эксперимент (Å/°) [11]
BN	1.652	1.6576
NH	1.023	1.0140
BH	1.217	1.2160
∠NBH	105.04	104.69
∠BNH	111.27	110.28

Таблица 2. Рассчитанные и экспериментальные значения зарядов атомов в молекуле NH₃BH₃

Атом	Заряд	
	Расчет	Эксперимент/расчет
		[12]
Ν	-0.980544	-0.8890.3284
В	-0.359571	-0.260.02
$H^1(N)$	0.430552	
$H^2(N)$	0.430627	-0.1950.09
$H^{3}(N)$	0.430640	
$H^{1}(B)$	0.014735	
$H^2(B)$	0.016795	+0.210+0.391
$H^{3}(B)$	0.016767	

Как видно из представленных данных, используемые функционал и базисный набор позволяют получить результаты, достаточно близкие к реальным. В частности, расчетные длины связей и углы очень хорошо соотносятся с экспериментальными значениями, заряды – чуть хуже, однако в целом распределение заряда также выглядит адекватно.

Длина связи Со-Fe, рассчитанная в данной работе, оказалась равна 1.95 Å, что очень близко к экспериментальному значению – 1.96 Å [13]. Заряды на атомах Fe и Co составляют 0.003595 и -0.003595, соответственно.

Рисунок 2 – Оптимизированная геометрия кластера CoFe

Представленные выше структуры были использованы для построения стартовой геометрии, из которой происходила оптимизация переходного состояния. Было совершено несколько попыток расчета из разных стартовых геометрий, но, к сожалению, на данном этапе исследований приемлемый результат не был достигнут. Поиск путей решения этой проблемы – одна из целей будущей работы.

6. Эффект от использования кластера в достижении целей работы

Предоставленные вычислительные мощности ИВЦ НГУ позволили осуществить требовательные квантово-химические расчеты с приемлемым количеством затраченного времени. Полученные теоретические результаты показали необходимость внесения изменений в методику поиска переходного состояния реакции твердофазного дегидрирования NH₃BH₃ на биметаллическом кластере CoFe.

Цитируемая литература:

- Zhou T. et al. A novel dehydrogenation style of NH3BH3 by catalyst of transition metal clusters // Int. J. Hydrogen Energy. 2016. Vol. 41, № 27. P. 11746–11760.
- 2. Bowden M., Autrey T. Characterization and mechanistic studies of the dehydrogenation of NH_xBH_x materials // Curr. Opin. Solid State Mater. Sci.

Elsevier, 2011. Vol. 15, № 2. P. 73–79.

- Al-Kukhun A., Hwang H.T., Varma A. Mechanistic studies of ammonia borane dehydrogenation // Int. J. Hydrogen Energy. 2013. Vol. 38, № 1. P. 169–179.
- Baitalow F. et al. Thermal decomposition of B–N–H compounds investigated by using combined thermoanalytical methods // Thermochim. Acta. 2002. Vol. 391, № 1. P. 159–168.
- Stowe A.C. et al. In situ solid state ¹¹B MAS-NMR studies of the thermal decomposition of ammonia borane: mechanistic studies of the hydrogen release pathways from a solid state hydrogen storage material. // Phys. Chem. Chem. Phys. 2007. Vol. 9, № 15. P. 1831–1836.
- Shaw W.J. et al. In Situ Multinuclear NMR Spectroscopic Studies of the Thermal Decomposition of Ammonia Borane in Solution // Angew. Chemie Int. Ed. John Wiley & Sons, Ltd, 2008. Vol. 47, № 39. P. 7493–7496.
- Diwan M. et al. Hydrogen generation from noncatalytic hydrothermolysis of ammonia borane for vehicle applications // AIChE J. 2011. Vol. 57, № 1. P. 259–264.
- Smythe N.C., Gordon J.C. Ammonia borane as a hydrogen carrier: Dehydrogenation and regeneration // Eur. J. Inorg. Chem. 2010. № 4. P. 509– 521.
- Hwang H.T., Al-Kukhun A., Varma A. Hydrogen for Vehicle Applications from Hydrothermolysis of Ammonia Borane: Hydrogen Yield, Thermal Characteristics, and Ammonia Formation // Ind. Eng. Chem. Res. 2010. Vol. 49, № 21. P. 10994–11000.
- Hwang H.T., Al-Kukhun A., Varma A. High and rapid hydrogen release from thermolysis of ammonia borane near PEM fuel cell operating temperatures: Effect of quartz wool // Int. J. Hydrogen Energy. 2012. Vol. 37, № 8. P. 6764– 6770.
- 11. Thorne L.R., Suenram R.D., Lovas F.J. Microwave spectrum, torsional barrier, and structure of BH₃NH₃ // J. Phys. Chem. 1983. Vol. 78. P. 167–171.
- Demirci U.B. Ammonia borane, a material with exceptional properties for chemical hydrogen storage // Int. J. Hydrogen Energy. 2017. Vol. 42, № 15. P. 9978–10013.
- Gutsev G.L. et al. Periodic table of 3d -metal dimers and their ions // J. Phys. Chem. 2014. Vol. 121. P. 6785.