ЧИСЛЕННОЕ МОДЕЛИРОВАНИЕ РАЗВИТИЯ ВОЗМУЩЕНИЙ В ТЕЧЕНИИ СМЕСИ КОЛЕБАТЕЛЬНО ВОЗБУЖДЕННЫХ ГАЗОВ НА ПЛАСТИНЕ СО ЗВУКОПОГЛОЩАЮЩИМ ПОКРЫТИЕМ

- Решетова Анна Игоревна, младший лаборант исследователь ИТПМ, магистрант ФФ НГУ

Работа выполнена при поддержке Российского фонда фундаментальных исследований (грант №16-08-00674). Название проекта: «Исследование взаимодействия длинноволновых возмущений с ударной волной на клине и модовая декомпозиция возмущений сверхзвукового потока». Руководитель: Цырюльников Иван Сергеевич. Проект рассчитан на 2016-2018год

Возможность управлять интенсивностью возмущений в пограничных слоях и переходом к турбулентности является одним из важных аспектов разработки перспективных гиперзвуковых летательных аппаратов.

В условиях реального полета, где наблюдаются большие скорости и температуры, проявляются эффекты реального газа, связанные С возбуждением колебательных степеней свободы молекул и неравновесностью течения. Свойства реального газа могут существенно повлиять на генерацию и развитие возмущений в пограничном слое, и как следствие на переход к турбулентности [1].Возмущения, формирующиеся в ударном слое, сносятся вниз по потоку и оказывают влияние на развитие возмущений и ламинарнотурбулентный переход в гиперзвуковом пограничном слое модели в целом. Одним известных методов управления ламинарно-турбулентным ИЗ переходом в умеренно гиперзвуковых течениях является метод нанесения на поверхность звукопоглощающего покрытия [2].

Целью данной работы является исследование развития возмущений в вязком ударном слое на пластине, обтекаемой гиперзвуковым потоком смесей углекислого газа и азота, и исследование влияния высокопористых ячеистых звукопоглощающих покрытий на подавление возмущений на модели в гиперзвуковых потоках смесей колебательно возбужденных газов.

Численное моделирование проводилось с помощью пакета ANSYS Fluent на базе решения двумерных нестационарных уравнений Навье – Стокса

в рамках модели термически совершенного газа, теплоёмкость которого зависит от температуры вследствие возбуждения колебательных степеней свободы молекул газа. Для расчета влияния колебательной релаксации молекул к уравнениям Навье – Стокса производилось добавление 4-х уравнений сохранения колебательной энергии (для каждой колебательной степени свободы молекул СО₂) и встраиваемых в пакет модулей для двухтемпературной модели колебательной релаксации реализации углекислого газа. В рамках этой модели изменение колебательной энергии от времени моделируется уравнением Ландау – Теллера, в котором учитывается конечность времени колебательной релаксации молекул СО₂. Поскольку энергия колебательного возбуждения возникает за счет кинетической энергии теплового движения сталкивающихся молекул, в работе учитываются два канала колебательной релаксации молекул СО₂ (при взаимодействии молекул CO_2 друг с другом и при взаимодействии молекул CO_2 с молекулами N_2):

Акустические возмущения набегающего потока моделировались заданием суперпозиции стационарного течения и плоских монохроматических акустических волн на левой и верхней границах расчётной области.

Таблица

Условия	Содержание СО ₂ [моль]	\mathbf{M}_{∞}	U ∞[м/с]	Re ₁ [m ⁻¹]	Р∞[Па]	T _v [K]	T ₀ [K]	T _w [K]
1	0,44	8,44	2255,41	1,36×10 ⁶	374,5	215	2430	300
2	0,22		2378,04					
3	0,88		2058,06					

На рис. 1 приведено сравнение расчетных данных с результатами экспериментов для смеси СО₂ и воздуха, проведённых трубных В аэродинамической трубе ИТ-302М ИТПМ СО РАН (условие 1 таблицы) [1]: рис.1а – положение головного скачка уплотнения, рис. 16 величина p'_2/p'_1 изменения амплитуд пульсаций давления вниз по потоку в ударном слое на пластине (индексы 1 и 2 соответствуют положениям датчиков 1 и 2, расположенных на расстоянии 80мм и 180мм от носика пластины, соответственно). Видно, что для условий эксперимента [1] колебательная релаксация молекул СО₂ при взаимодействии с молекулами азота (2-ой канал колебательной релаксации) слабо влияет и на характеристики среднего течения, и на интенсивность возмущений.

Рис.1. Положение ударной (а) волны и степени роста пульсаций давления на поверхности пластины (б) при воздействии быстрой акустической волны (α=10.2°, *L*=200мм): (1) – экспериментальные данные смеси CO₂ и воздуха, (2) – расчетные данные равновесного течения смеси CO₂ и N₂, (3) – расчетные данные неравновесного течения смеси CO₂ и N₂

В данной работе исследовано влияние угла атаки (α =0÷20°) на характеристики среднего течения и пульсации давления на поверхности пластины при разных частотах внешних акустических возмущений в гиперзвуковом потоке смеси колебательно возбужденных газов (условие 1 таблицы). Видно, что воздействие внешних акустических возмущений приводит к генерации в ударном слое нарастающих по длине пластины возмущений давления (рис.2б).

Рис.2. Расчетные данные по среднеквадратичным пульсациям давления на поверхности сплошной пластины: (1) – α=5°, (2) – α=10.2°, (3) – α=15°, (4) – α=20 (*L*=400мм) при воздействии быстрой акустической волны с частотой *f*=160 кГц и амплитудой *A*=0.03

В данной работе исследовано влияние концентрации CO_2 на характеристики среднего течения и развитие возмущений в ударном слое на пластине под углом атаки α =10.2° в потоке смеси колебательно возбужденных газов. Параметры течения приведены в таблице. Показано, что повышение концентрации CO_2 в смеси увеличивает термическую неравновесность, и

интенсивность пульсаций давления на поверхности сплошной пластины снижается (рис 3).

Рис.3. Среднеквадратичные пульсации давления на поверхности сплошной пластины при разных концентрациях CO₂ в смеси: (1) – 0,22mol, (2) – 0,44mol, (3) – 0,88mol (L=400мм) при воздействии быстрой акустической волны с частотой *f*=160 кГц и амплитудой *A*=0.03

Предыдущие исследования о развитии возмущений на сплошной пластине необходимы для решения задачи о влиянии звукопоглощающих покрытий. Полученные результаты помогли определить, при каких параметрах среднего течения и частотах внешнего акустического возмущения пульсации давления достигают максимума. Представление о картине развития возмущений в ударном слое позволяет приступить к исследованиям влияния пористых звукопоглощающих покрытий.

В численном моделировании использовалась скелетная модель пористой среды квадратных элементов (рис. 36). В виде Геометрические размеры пор выбирались из соображений сходства со звукопоглощающими вставками: расстояние между элементами В продольном и поперечном направлениях равно диаметру пор материала (2мм). Размер элементов каркаса ВПЯМ (0.4мм×0.4мм) выбирался из соответствия коэффициенту пористости материала 0.95, а именно суммарная площадь элементов составляет только 5% площади пористой вставки. Эти элементы располагались в шахматном порядке друг за другом (рис. 3б). Такое расположение обеспечивает взаимодействие потока со всеми элементами модели скелета, как это имеет место в трубном эксперименте.

Звукопоглощающие вставки длиной 80мм и глубиной 14мм включены в расчетную область на расстоянии 90мм (вставка I), 200мм (вставка II) и 270мм (вставка III) от передней кромки пластины, расположенной под углом атаки 10.2°, а вставка III – в области максимума возмущений. Во всех трёх случаях звукопоглощающие покрытия эффективно

снижают интенсивность пульсаций давления при частотах выше 80кГц (рис. 4). Однако, звукопоглощающие покрытия, расположенные ближе к максимуму возмущений, более эффективны по снижению интенсивности пульсаций.

Рис.4. Среднеквадратичные пульсации давления на поверхности пластины при воздействии быстрой акустической волны с частотой (а) – *f*=120кГц, (б) – *f*=160кГц и амплитудой *A*=0.03: (1) – сплошная пластина, (2) – пластина с покрытием I, (3) – пластина с покрытием II, (4) – пластина с покрытием III (условия 1 таблицы, *L*=400мм)

Для исследования влияния длины пористого покрытия рассматривалось 2 случая: обтекание пластины со вставкой I длиной 80мм, расположенной в области максимума возмущений, и со вставкой IV, длина которой увеличена в 2 раза (160мм). Пористое покрытие, установленное в области локального максимума возмущений, эффективно снижает пульсации давления, в частности, на поверхности пластины с пористым покрытием длиной 160мм до 95%.

Рис.5. Среднеквадратичные пульсации давления: (1) – на поверхности сплошной пластины, (2) – на пластине с покрытием, (3) – на пластине с покрытием IV; при воздействии быстрой акустической волны с частотой *f*=160кГц и амплитудой *A*=0.03 (условия 1 таблицы, *L*=400мм)

Ранее было показано, что с ростом угла атаки интенсивность

возмущений увеличивается, и на поверхности пластины наблюдаются области локальных максимумов и минимумов среднеквадратичных пульсаций давления. Представляет интерес исследование влияния угла атаки на эффективность метода звукопоглощающих покрытий.

На рис. 6 представлены результаты расчетов по подавлению возмущений пористыми покрытиями на поверхности пластины под разными углами атаки $\alpha=5\div15^{\circ}$ при разных вариантах расположения пористых звукопоглощающих вставок. Видно, что звукопоглощающие покрытия оказывают сильное влияние как на интенсивность возмущений в зоне расположения покрытия, так и на характер пульсаций вниз по потоку от зоны расположения покрытий, которое по-разному проявляется в зависимости от угла атаки и зоны расположения покрытия. В целом пористые покрытия при всех углах атаки значительно подавляют пульсации давления.

Рис.5. Среднеквадратичные пульсации давления при воздействии быстрой акустической волны с частотой *f*=160кГц и амплитудой *A*=0.03 (условия 1 таблицы, *L*=400мм): (сплошная линия) – на поверхности сплошной пластины, (прерывистая линия) – на пластине с покрытием: (a) – α=5°, (б) – α=10.2°, (в) – α=15°

В ходе работы для гиперзвуковых ударных слоев получены данные по динамике развития возмущений на сплошной пластине и пластине со звукопоглощающим высокопористым покрытием, обтекаемой гиперзвуковым потоком колебательно возбуждённой смеси углекислого газа и азота, при разных:

- углах атаки;
- концентрациях CO₂;
- частотах внешней акустической волны;
- параметрах пористого покрытия(глубина, ширина, расположение на пластине).

Показано, что звукопоглощающее покрытие модели снижает пульсации давления на поверхности (до 90%). Наиболее эффективными являются вставки, расположенные в области локального максимума или нарастания возмущений, а с увеличением длины пористой зоны подавление возмущений значительно усиливается.

Метод пористых звукопоглощающих покрытий эффективно работает для подавления пульсаций при обтекании тел колебательно возбужденными газами.

1. S. V. Kirilovskiy, A. A. Maslov, T. V. Poplavskaya, I. S. Tsyryul'nikov Influence of Vibrational Relaxation on Perturbations in a Shock Layer on a Plate // Technical Physics. 2015. Vol. 60. No. 5. P. 645–655

2. Fedorov A., Shiplyuk A., Maslov A., et al. Stabilization of a hypersonic boundary layer using an ultrasonic absorptive coatings // J. Fluid Mech. 2003. V. 479. P. 99–130

Эффект от использования кластера в достижении целей работы

Для выполнения данного исследования необходимо большое количество параметрических расчётов. Использование кластера НГУ существенно ускорило их проведение, а, следовательно, и получение научных результатов.

Публикации:

- А. И. Решетова, С. В. Кириловский, Т. В. Поплавская, Влияние колебательной релаксации на гиперзвуковое обтекание пластины смесью газов // Тезисы докладов XXIV Всероссийского семинара с международным участием / под ред. В.М. Фомина, В.И. Запрягаева, Новосибирск, 11-13 ноября 2015. (стр. 135)
- А. И. Решетова, О влиянии угла атаки на интенсивность возмущений в потоке смеси колебательно возбужденных газов // Тезисы докладов 54-ой Международной научной студенческой конференции, Новосибирск, 16-20 апреля 2016г, стр 56

• A.I. Reshetova, T.V. Poplavskaya, Evolution of disturbances in the shock layer on a flat plate in a flow of a mixture of vibrationally excited gases International Conference on the Methods of Aerophysical Research, 27.06- 3.07 2016, Perm, Russia: Abstracts. Pt II, p. 179

• Reshetova A.I., Poplavskaya T.V. Evolution of disturbances in the shock layer on a flat plate in a flow of a mixture of vibrationally excited gases //AIP Conf. Proc. Vol.1770, 30059 (2016); <u>http://dx.doi.org/10.1063/1.4964001</u>

• А. И. Решетова, Т. В. Поплавская, Численное моделирование развития возмущений в гиперзвуковом потоке смеси колебательно возбужденных газов // Материалы XX Всероссийской научной конференции с международным участием "Сопряженные задачи механики реагирующих сред, информатики и экологии", 21-23 сентября, 2016, Томск/Рос.фонд фундам. исслед. ; Том. гос. ун-т, Мех.-мат. фак.; под ред. Д.П. Касымова. - Томск: Томский государственный университет, 2016. URL: http://vital.lib.tsu.ru/vital/access/manadger/Repository/vtls:000548592 (стр. 156-158)

• А. И. Решетова, С. В. Кириловский, Т. В. Поплавская, Численное моделирование развития возмущений в течении колебательно возбужденных газов на пластине // Материалы XVII Всероссийской конференции молодых ученых по математическому моделированию и информационным технологиям. г. Новосибирск, Россия, 30 октября - 3 ноября 2016г. - Новосибирск: ИВТ СО РАН, 2016. - стр. 61

• А. И. Решетова, Управление возмущениями течения на пластине в потоке смеси колебательно-возбужденных газов // НАУКА. ТЕХНОЛОГИИ. ИННОВАЦИИ // Сборник научных трудов в 9 ч. / под ред. проф. Б.Ю. Лемешко, проф. А.А. Попова, проф. М.Э. Рояка, доц. В.С. Тимофеева. - Новосибирск: Изд-во НГТУ, 2016. - Часть 2. - стр. 137-138

• А. И. Решетова, Т. В. Поплавская, Влияние звукопоглощающих покрытий поверхностей на интенсивность возмущений в потоке смеси колебательновозбужденных газов // Тезисы докладов XV Всероссийской школы-семинара по аэродинамике и динамике полёта летательных аппаратов (СибНИА), 1-4 марта 2017г

• А. И. Решетова, Т. В. Поплавская, Численное моделирование развития возмущений в течении смеси колебательно возбужденных газов на пластине со звукопоглощающим покрытием // Тезисы докладов XI Всероссийской конференции молодых ученых 20-23 марта 2017г., Новосибирск – Шерегеш

• Решетова А.И., Поплавская Т.В. Численное исследование развития возмущений на пластине в гиперзвуковом потоке смеси колебательновозбужденных газов // Сибирский физический журнал. 2017. Т. 12, No 2. С. 11–19.

• А. И. Решетова, Влияние звукопоглощающих покрытий на развитие возмущений на пластине в потоке смеси колебательно-возбужденных газов. // Тезисы докладов 55-ой Международной научной студенческой конференции, Новосибирск, 16-20 апреля 2017г. стр. 63

• А.И. Решетова, Т.В. Поплавская, С.В. Кириловский, И.С. Цырюльников, Воздействие звукопоглощающих покрытий на развитие возмущений в потоке смеси колебательно возбужденных газов, 4-8 сентября 2017г. стр. 223