
User’s Guide
Altair PBS Professional™ 19.2.3

You are reading the Altair PBS Professional 19.2.3

User’s Guide (UG)

Updated 7/31/19

Copyright © 2003-2019 Altair Engineering, Inc. All rights reserved.

ALTAIR ENGINEERING INC. Proprietary and Confidential. Contains Trade Secret Information. Not for use or disclo-
sure outside of Licensee’s organization. The software and information contained herein may only be used internally and
are provided on a non-exclusive, non-transferable basis. Licensee may not sublicense, sell, lend, assign, rent, distribute,
publicly display or publicly perform the software or other information provided herein, nor is Licensee permitted to
decompile, reverse engineer, or disassemble the software. Usage of the software and other information provided by Altair
(or its resellers) is only as explicitly stated in the applicable end user license agreement between Altair and Licensee. In
the absence of such agreement, the Altair standard end user license agreement terms shall govern.

Use of Altair’s trademarks, including but not limited to “PBS™”, “PBS Professional®”, and “PBS Pro™”, “PBS
Works™”, “PBS Control™”, “PBS Access™”, “PBS Analytics™”, “PBScloud.io™”, and Altair’s logos is subject to
Altair's trademark licensing policies. For additional information, please contact Legal@altair.com and use the wording
“PBS Trademarks” in the subject line.

For a copy of the end user license agreement(s), log in to https://secure.altair.com/UserArea/agreement.html or contact
the Altair Legal Department. For information on the terms and conditions governing third party codes included in the
Altair Software, please see the Release Notes.

This document is proprietary information of Altair Engineering, Inc.

Contact Us

For the most recent information, go to the PBS Works website, www.pbsworks.com, select "My PBS", and log in with
your site ID and password.

Altair

Altair Engineering, Inc., 1820 E. Big Beaver Road, Troy, MI 48083-2031 USA www.pbsworks.com

Sales

pbssales@altair.com 248.614.2400

Please send any questions or suggestions for improvements to agu@altair.com.

https://secure.altair.com/UserArea/agreement.html
http://www.pbsworks.com
http://www.pbsworks.com

Technical Support

Need technical support? We are available from 8am to 5pm local times:

Location Telephone e-mail

Australia +1 800 174 396 anz-pbssupport@india.altair.com

China +86 (0)21 6117 1666 pbs@altair.com.cn

France +33 (0)1 4133 0992 pbssupport@europe.altair.com

Germany +49 (0)7031 6208 22 pbssupport@europe.altair.com

India +91 80 66 29 4500

+1 800 425 0234 (Toll Free)

pbs-support@india.altair.com

Italy +39 800 905595 pbssupport@europe.altair.com

Japan +81 3 6225 5821 pbs@altairjp.co.jp

Korea +82 70 4050 9200 support@altair.co.kr

Malaysia +91 80 66 29 4500

+1 800 425 0234 (Toll Free)

pbs-support@india.altair.com

North America +1 248 614 2425 pbssupport@altair.com

Russia +49 7031 6208 22 pbssupport@europe.altair.com

Scandinavia +46 (0)46 460 2828 pbssupport@europe.altair.com

Singapore +91 80 66 29 4500

+1 800 425 0234 (Toll Free)

pbs-support@india.altair.com

South Africa +27 21 831 1500 pbssupport@europe.altair.com

South America +55 11 3884 0414 br_support@altair.com

UK +44 (0)1926 468 600 pbssupport@europe.altair.com

Contents

About PBS Documentation ix

1 Getting Started with PBS 1
1.1 Why Use PBS? . 1

1.2 PBS Tasks and Components . 1

1.3 Interfaces to PBS . 3

1.4 Setting Up Your Environment . 5

2 Submitting a PBS Job 11
2.1 Introduction to the PBS Job. 11

2.2 The PBS Job Script . 14

2.3 Submitting a PBS Job . 18

2.4 Job Submission Recommendations and Advice . 24

2.5 Job Submission Options . 24

3 Job Input & Output Files 33
3.1 Introduction to Job File I/O in PBS . 33

3.2 Input/Output File Staging. 33

3.3 Managing Output and Error Files . 41

4 Allocating Resources & Placing Jobs 51
4.1 What is a Vnode? . 51

4.2 PBS Resources . 51

4.3 Requesting Resources . 52

4.4 How Resources are Allocated to Jobs . 59

4.5 Limits on Resource Usage . 62

4.6 Viewing Resources . 64

4.7 Specifying Job Placement . 65

4.8 Backward Compatibility . 71

5 Multiprocessor Jobs 77
5.1 Submitting Multiprocessor Jobs . 77

5.2 Using MPI with PBS . 81

5.3 Using PVM with PBS. 103

5.4 Using OpenMP with PBS . 104

5.5 Hybrid MPI-OpenMP Jobs. 105
PBS Professional 19.2.3 User’s Guide UG-v

Contents

6 Controlling How Your Job Runs 109
6.1 Using Job Exit Status . 109

6.2 Using Job Dependencies . 109

6.3 Adjusting Job Running Time . 112

6.4 Using Checkpointing . 115

6.5 Holding and Releasing Jobs . 117

6.6 Allowing Your Job to be Re-run. 120

6.7 Controlling Number of Times Job is Re-run . 121

6.8 Deferring Execution. 121

6.9 Setting Priority for Your Job . 122

6.10 Making qsub Wait Until Job Ends. 122

6.11 Running Your Job Interactively . 123

6.12 Using Environment Variables . 128

6.13 Specifying Which Jobs to Preempt . 129

6.14 Releasing Unneeded Vnodes from Your Job . 129

6.15 Running Your Job in a Container . 133

6.16 Running Your Job in the Cloud . 134

6.17 Allowing Your Job to Tolerate Vnode Failures . 134

7 Reserving Resources Ahead of Time 135
7.1 Glossary . 135

7.2 Prerequisites for Reserving Resources. 135

7.3 Creating and Using Reservations . 136

7.4 Changing Reservations . 139

7.5 Deleting Reservations . 140

7.6 Viewing the Status of a Reservation . 140

7.7 Using Your Reservation . 143

7.8 Reservation Caveats and Errors . 145

8 Job Arrays 147
8.1 Advantages of Job Arrays . 147

8.2 Glossary . 147

8.3 Description of Job Arrays . 147

8.4 Submitting a Job Array . 150

8.5 Viewing Status of a Job Array . 154

8.6 Using PBS Commands with Job Arrays . 158

8.7 Job Array Caveats. 160

9 Working with PBS Jobs 161
9.1 Using Job History . 161

9.2 Modifying Job Attributes . 162

9.3 Deleting Jobs. 164

9.4 Sending Messages to Jobs . 165

9.5 Sending Signals to Jobs . 166

9.6 Changing Order of Jobs . 166

9.7 Moving Jobs Between Queues . 167
UG-vi PBS Professional 19.2.3 User’s Guide

Contents
10 Checking Job & System Status 169
10.1 Checking Job Status . 169

10.2 Checking Server Status. 181

10.3 Checking Queue Status . 182

10.4 Full Display Options for Job, Queue, and Server Status. 184

10.5 Selecting a List of Jobs . 185

10.6 Checking License Availability . 187

11 Submitting Cray Jobs 189
11.1 PBS Jobs on the Cray . 189

11.2 Resources . 189

11.3 Rules for Submitting Jobs on the Cray . 190

11.4 Techniques for Submitting Cray Jobs . 191

11.5 Using Xeon Phi Vnodes . 193

11.6 Using Hyperthreads on Cray . 193

11.7 Viewing Cray Job Information . 194

11.8 Caveats and Advice . 195

11.9 Errors and Logging . 196

12 Using Provisioning 197
12.1 Definitions . 197

12.2 How Provisioning Works . 197

12.3 Requirements and Restrictions . 198

12.4 Using Provisioning. 200

12.5 Caveats and Errors . 201

13 Using Accounting 203
13.1 Using Accounting . 203

Index 205
PBS Professional 19.2.3 User’s Guide UG-vii

Contents
UG-viii PBS Professional 19.2.3 User’s Guide

About PBS Documentation

The PBS Professional guides and release notes apply to the commercial releases of PBS Professional.

Document Conventions

Abbreviation

The shortest acceptable abbreviation of a command or subcommand is underlined

Attribute

Attributes, parameters, objects, variable names, resources, types

Command

Commands such as qmgr and scp

Definition

Terms being defined

File name

File and path names

Input

Command-line instructions

Method

Method or member of a class

Output

Output, example code, or file contents

Syntax

Syntax, template, synopsis

Utility

Name of utility, such as a program

Value

Keywords, instances, states, values, labels

Notation

Optional arguments are enclosed in square brackets. For example:

qstat [-E]

Variables are enclosed in angle brackets. A variable is something the user must fill in with the correct value. In the fol-
lowing example, the user replaces vnode name with the name of the vnode:

pbsnodes -v <vnode name>
PBS Professional 19.2.3 User’s Guide UG-ix

About PBS Documentation
Optional variables are enclosed in angle brackets inside square brackets. For example:

qstat [<job ID>]

Literal terms appear exactly as they should be used. For example, to get the version of the qstat command, type the
following exactly:

qstat --version

List of PBS Professional Documentation

PBS Professional Release Notes

Supported platforms, what’s new and/or unexpected in this release, deprecations and interface changes, open and
closed bugs, late-breaking information. For administrators and job submitters.

PBS Professional Installation & Upgrade Guide:

How to install and upgrade PBS Professional. For the administrator.

PBS Professional Administrator s Guide:

How to configure and manage PBS Professional. For the PBS administrator.

PBS Professional Hooks Guide:

How to write and use hooks for PBS Professional. For the PBS administrator.

PBS Professional Reference Guide:

Covers PBS reference material.

PBS Professional User s Guide:

How to submit, monitor, track, delete, and manipulate jobs. For the job submitter.

PBS Professional Programmer s Guide:

Discusses the PBS application programming interface (API). For integrators.

PBS Professional Manual Pages:

PBS commands, resources, attributes, APIs.

Where to Keep the Documentation

To make cross-references work, put all of the PBS guides in the same directory.

Ordering Software and Licenses

To purchase software packages or additional software licenses, contact your Altair sales representative at
pbssales@altair.com.
UG-x PBS Professional 19.2.3 User’s Guide

1

Getting Started with PBS

1.1 Why Use PBS?

PBS frees you from the mechanics of getting your work done; you don’t need to shepherd each job to the right machine,
get input and output copied back and forth, or wait until a particular machine is available. You need only specify require-
ments for the tasks you want executed, and hand the tasks off to PBS. PBS holds each task until a slot opens up, then
takes care of copying input files to the execution directory, executing the task, and returning the output to you.

PBS keeps track of which hardware and licenses are available, and all waiting and running tasks. PBS matches the
requirements of each of your tasks to the right hardware, licenses, and time slot, and makes sure that tasks are run accord-
ing to the site’s policy. PBS also maximizes usage and throughput.

1.2 PBS Tasks and Components

1.2.1 PBS Tasks

PBS is a distributed workload management system. PBS manages and monitors the computational workload for one or
more computers. PBS does the following:

Queuing jobs

PBS collects jobs (work or tasks) to be run on one or more computers. Users submit jobs to PBS, where they are
queued up until PBS is ready to run them.

Scheduling jobs

PBS selects which jobs to run, and when and where to run them, according to the policy specified by the site
administrator. PBS allows the administrator to prioritize jobs and allocate resources in a wide variety of ways,
to maximize efficiency and/or throughput.

Monitoring jobs

PBS tracks system resources, enforces usage policy, and reports usage. PBS tracks job completion, ensuring
that jobs run despite system outages.
PBS Professional 19.2.3 User’s Guide UG-1

Chapter 1 Getting Started with PBS
1.2.2 PBS Components

PBS consists of a set of commands and system daemons/services, shown here:

Figure 1-1: Jobs are submitted to the PBS server. The scheduler chooses where and when to run the

jobs, and the server sends the jobs to MoM. PBS commands communicate with the server.

The server, scheduler, and communication daemons run on the server host. A machine that executes jobs is called an
execution host. Each execution host runs a MoM daemon. The server host can run a MoM daemon. One server man-
ages any number of MoM daemons. Commands can be run from the server host, execution hosts, and command-only cli-
ent hosts. The server/scheduler/communication host, the execution hosts, and the client hosts are called a PBS complex.

Commands

PBS provides a set of commands that you can use to submit, monitor, alter, and delete jobs. The PBS com-
mands can be installed on any supported platform, with or without the other PBS components.

Some PBS commands can be run by any PBS user, while some require administrator or operator privilege.
Some commands provide extended features for administrators and operators.

Job

A PBS job is a task, in the form of a shell script, cmd batch file, Python script, etc. describing the commands
and/or applications you want to run. You hand your task off to PBS, where it becomes a PBS job.

Server

The PBS server manages jobs for the PBS complex. PBS commands talk to the PBS server, jobs are submitted
to the server, and the server queues the jobs and sends them to execution hosts.

Scheduler

The scheduler runs jobs according to the policy specified by the site administrator. The scheduler matches each
job’s requirements with available resources, and prioritizes jobs and allocates resources according to policy.

MoM

MoM manages jobs once they are sent to the execution host. One MoM manages the jobs on each execution
host. MoM stages files in, runs any prologue, starts each job, monitors the job, stages files out and returns out-
put to the job submitter, runs any epilogue, and cleans up after the job. MoM can also run any execution host
hooks.

MoM creates a new session that is as identical to your login session as is possible. For example, under Linux, if
the job submitter’s login shell is csh, then MoM creates a session in which .login is run as well as .cshrc.

MoM is a reverse-engineered acronym that stands for Machine-oriented Mini-server.

Batch
 JobsJobs

Kernel

PBS
Commands

Server

Scheduler

MoM
UG-2 PBS Professional 19.2.3 User’s Guide

Getting Started with PBS Chapter 1
1.3 Interfaces to PBS

PBS provides a command-line interface and its own GUI (Graphical User Interface). Altair also offers a web-based front
end to PBS called Compute Manager, which is a separate product. This document describes the PBS command-line
interface and the PBS GUI. For information on Compute Manager, see www.pbsworks.com.

1.3.1 PBS Commands

PBS provides a set of commands that allow to submit, monitor, and manage your jobs. Some PBS commands can be
used by any PBS user; some can be used only by administrators, and some have different behavior depending on the role
of the person invoking them. In this document, we describe the commands that can be used by any PBS user. For a com-
plete description of all commands and their requirements, see “Requirements for Commands” on page 19 of the PBS Pro-
fessional Reference Guide.

Table 1-1: PBS Professional User Commands

PBS User Commands

Command Purpose

nqs2pbs Convert from NQS to PBS

pbs_rdel Delete a reservation

pbs_rstat Status a reservation

pbs_password Update per-user / per-server password

pbs_python Python interpreter

pbs_rsub Submit a reservation

pbsdsh PBS distributed shell

qalter Alter job

qdel Delete job

qhold Hold a job

qmove Move job

qmsg Send message to job

qorder Reorder jobs

qrls Release hold on job

qselect Select jobs by criteria

qsig Send signal to job

qstat Status job, queue, server

qsub Submit a job

tracejob Report job history
PBS Professional 19.2.3 User’s Guide UG-3

Chapter 1 Getting Started with PBS
We also list the PBS administrator commands here:

Table 1-2: PBS Administrator Commands

 PBS Administrator Commands

Command Purpose

pbs-report Report job statistics

pbs_hostn Report host name(s)

pbs_migrate_users Migrate per-user / per-server passwords

pbs_probe PBS diagnostic tool

pbs_tclsh TCL with PBS API

pbsfs Show fairshare usage

pbsnodes Manage vnodes

printjob Report job details

qdisable Disable a queue

qenable Enable a queue

qmgr Manager interface

qrerun Requeue running job

qrun Manually start a job

qstart Start a queue

qstop Stop a queue

qterm Shutdown PBS
UG-4 PBS Professional 19.2.3 User’s Guide

Getting Started with PBS Chapter 1
1.4 Setting Up Your Environment

1.4.1 Prerequisites for Account

Your account must have the following characteristics for PBS to work correctly:

• Account must have access to all PBS hosts

• Account must have valid username and group on all execution hosts and on the server

• Account must be able to transfer files between hosts using the file transfer mechanism chosen by the administrator.
This is described in section 14.6, "Setting File Transfer Mechanism", on page 551 of the PBS Professional Adminis-
trator’s Guide.

• The time zone environment variable must be set correctly in order to use advance and standing reservations. See
section 1.4.5, “Setting Time Zone for Submission Host”, on page 10.

• Username must be 256 characters or less in length.

• Your environment must be correctly configured:

• For Linux, see section 1.4.2, “Setting Up Your Linux Environment”, on page 5.

• For Windows, see section 1.4.3, “Setting Up Your Windows Environment”, on page 6.

• Account must have correct user authorization to run jobs. See section 1.4.4, “Setting Up Your User Authorization”,
on page 8.

1.4.2 Setting Up Your Linux Environment

1.4.2.1 Set Paths to PBS Commands

PBS commands reside in a directory pointed to by $PBS_EXEC/bin. This path may change from one installation of PBS
to the next, so use the variable instead of the absolute path. The location of $PBS_EXEC is given in /etc/pbs.conf.
Make it easy to use PBS commands by doing the following:

1. In your .login file, source /etc/pbs.conf:

If you are using bash or sh, do the following:

% . /etc/pbs.conf

If you are using csh, do the following:

%source /etc/pbs.conf

2. Add the path to PBS commands to your PATH environment variable. Use $PBS_EXEC, not the absolute path. For
example, where MY_PATH is your existing set of paths:

setenv PATH ${MY_PATH}:$PBS_EXEC/bin/

1.4.2.2 Set Paths to PBS Man Pages

Add the path to the PBS man pages to your MANPATH environment variable:

setenv MANPATH /usr/man:/usr/local/man:$PBS_EXEC/share/man/
PBS Professional 19.2.3 User’s Guide UG-5

Chapter 1 Getting Started with PBS
1.4.2.3 Make Login and Logout Files Behave Properly for Jobs

By default, PBS runs your jobs under your login, meaning that your login and logout files are sourced for each job. If
your .cshrc, .login, .profile, or .logout contains commands that attempt to set terminal characteristics or pro-
duce output, such as by writing to stdout, jobs may not run. Make sure that any such command in these files is skipped
when the file is run inside a PBS job. PBS sets the PBS_ENVIRONMENT environment variable inside jobs. Test for
the PBS_ENVIRONMENT environment variable and run commands only when it is not set. For example, in a .login
file:

if (! $?PBS_ENVIRONMENT) then

do terminal settings here

run command with output here

endif

1.4.2.4 Capture Correct Job Exit Status

When a PBS job runs, the exit status of the last command executed in the job is reported by the job’s shell to PBS as the
exit status of the job. The exit status of the job is important for job dependencies and job chaining. Under Linux, the last
command executed might not be the last command in your job, if you have a .logout on the execution host. In that
case, the last command executed is from the .logout and not from your job. To prevent this, preserve the job’s exit sta-
tus in your .logout file by saving it at the top, then doing an explicit exit at the end, as shown below:

set EXITVAL = $status

previous contents of .logout here

exit $EXITVAL

Under Windows, you do not need to take special steps to preserve the job’s exit status.

1.4.2.5 Avoid Background Processes Inside Jobs

Make sure that your login file doesn’t run processes in the background when invoked inside a PBS job. If your login file
contains a command that runs in the background inside a PBS job, persistent processes can cause trouble for some
MoMs. For example, applications like ssh-agent background themselves into a new session and would prevent a cpuset-
enabled MoM from deleting the CPU set for the job, thereby preventing subsequent jobs from running.

1.4.2.6 Provide bash Functions to Jobs

If your jobs need to have exported bash functions available to them, you can put these functions in your .profile or
.login on the execution host(s). You can also use qsub -V or qsub -v <function name> to forward the func-
tion at job submission. Just make sure that you don’t have a function with the same name as an environment variable if
you use -v or -V. See section 6.12.4, “Forwarding Exported Shell Functions”, on page 129.

1.4.3 Setting Up Your Windows Environment

1.4.3.1 HOMEDIR for Windows Users

PBS starts jobs in the job owner’s home directory, which is pointed to by HOMEDIR.

If you have not been explicitly assigned a home directory, PBS uses a Windows-assigned default as the base location for
your default home directory, and starts jobs there. Windows assigns the following default home path:

[PROFILE_PATH]\My Documents\PBS Pro

For example, if userA has not been assigned a home directory, the default home directory is the following:

\Documents and Settings\userA\My Documents\PBS Pro
UG-6 PBS Professional 19.2.3 User’s Guide

Getting Started with PBS Chapter 1
Windows can return one PROFILE_PATH in one of the following forms:

\Documents and Settings\username

\Documents and Settings\username.local-hostname

\Documents and Settings\username.local-hostname.00N

where N is a number

\Documents and Settings\username.domain-name

1.4.3.2 Requirements for Windows Username

• The username must contain only alphanumeric characters, dot (.), underscore (_), and/or hyphen “-”.

• The hyphen must not be the first letter of the username.

• If “@” appears in the username, then it is assumed to be in the context of a Windows domain account: user-
name@domainname.

• The space character is allowed. If a space character appears in a username string, then the string is displayed in
quotes, and must be specified in quotes.

1.4.3.3 Requirements for Windows User Account

Your Windows user account must be a normal user account. You cannot submit jobs from a SYSTEM account.

1.4.3.4 Allow Job Submission and Return of Output

PBS runs your jobs under your account. When your job runs on a remote execution host, it needs to be able to log in and
transfer files using your account. If your system administrator has not set up access using hosts.equiv, you can set
up access using .rhosts files. A .rhosts file on the server allows you to submit jobs from a remote machine to the
server.

Set up the .rhosts file in your PROFILE_PATH, in your home directory, on the PBS server host and on each execution
host. For example:

\Documents and Settings\username\.rhosts

Format of .rhosts file:

hostname username

Be sure the .rhosts file is owned by you or an administrator-type group, and has write access granted only to you or an
administrator or group.

Add all PBS hosts to your .rhosts file:

Host1 user1

Host2 user1

Host3 user1

Make sure that you list all the names by which a host may be known. For instance, if Host4 is known as "Host4",
"Host4.<subdomain>", or "Host4.<subdomain>.<domain>" you should list all three in the .rhosts file:

Host4 user1

Host4.subdomain user1

Host4.subdomain.domain user1
PBS Professional 19.2.3 User’s Guide UG-7

Chapter 1 Getting Started with PBS
If your username contains white space, quote it in the .rhosts file:

Host4.subdomain.domain “Bob Jones”

Example 1-1: The following entry in user user1’s .rhosts file on the server permits user user1 to run jobs submitted
from the workstation wks031:

wks031 user1

To allow user1’s output files from a job that runs on execution host Host1 to be returned to user1 automatically by
PBS, user1 adds an entry to the .rhosts file on the workstation naming the execution host Host1:

Host1 user1

1.4.3.5 Set up Paths

If you will use a mapped drive for submitting jobs, staging files in and out, or for output and error files, you must map
that drive with a local system account. We recommend using UNC paths. If you do not use a local system account, file
transfer behavior is undefined. To map a drive with global access using a local system account, use the psExec utility
from SysInternals:

<path to psexec binary> -s net use <mapped drive letter>: <UNC path to map>

For example:

psexec -s net use Z: \\examplehost\mapping_directory\mydirectory

To unmap a mapped drive:

<path to psexec binary> -s net use /delete <mapped drive letter>

For example:

psexec -s net use /delete Z:

1.4.4 Setting Up Your User Authorization

PBS requires that your username be consistent across a server and its execution hosts, but not across a submission host
and a server. You may have access to more than one server, and may have a different username on each server. You can
change the user ID for a job; see section 2.5.4, “Specifying Job Username”, on page 28.
UG-8 PBS Professional 19.2.3 User’s Guide

Getting Started with PBS Chapter 1
1.4.4.1 User Authorization Under Linux

The server’s flatuid attribute determines whether it assumes that identical user names mean identical users. If True, it
assumes that if UserS exists on both the submission host and the server host, then UserS can run jobs on that server. If
not True, the server calls ruserok() which uses /etc/hosts.equiv or .rhosts to authorize UserS to run as
UserS. In this case, the username you specify with the -u option must have a .rhosts file on the server host listing the
job owner, meaning that UserS at the server must have a .rhosts file listing UserS.

Example 1-2: Our user is UserA on the submission host, but is userB at the server. In order to submit jobs as UserA and
run jobs as UserB, UserB must have a .rhosts file on the server host that lists UserA.

Note that if different names are listed via the -u option, then they are checked regardless of the value of flatuid.

Using hosts.equiv is not recommended.

1.4.4.2 User Authorization Under Windows

Under Windows, if a user has a non-admin account, the server hosts.equiv file is used to determine whether that user
can run a job on a given server. For an admin account, [PROFILE_PATH].\rhosts is used, and the server’s
acl_roots attribute must be set to allow job submissions. User names containing spaces are allowed as long as the user-
name length is no more than 256 characters, and the user names are quoted when used in the command line.

Table 1-3: Linux User ID and flatuid

Value of
flatuid

Submission Host Username vs. Server Host Username

UserS Same as UserS UserS Different from UserA

True Server assumes user has permission to run job Server checks whether UserS can run job as UserA

False/

unset

Server checks whether UserS can run job as UserS Server checks whether UserS can run job as UserA

Table 1-4: Requirements for Admin User to Submit Job

Location/Action
Submission Host Username vs. Server Host

Username

UserS Same as UserS
UserS Different from

UserA

[PROFILE_PATH]\.rhosts contains For UserS on ServerA, add
<HostS> UserS

For UserA on ServerA, add
<HostS> UserS

set ServerA’s acl_roots attribute qmgr> set server
acl_roots=UserS

qmgr> set server
acl_roots=UserA

Table 1-5: Requirements for Non-admin User to Submit Job

File Submission Host Username vs. Server Host Username

UserS Same as UserS UserS Different from UserA

hosts.equiv on ServerA <HostS> <HostS> UserS
PBS Professional 19.2.3 User’s Guide UG-9

Chapter 1 Getting Started with PBS
1.4.5 Setting Time Zone for Submission Host

Make sure that the environment variable PBS_TZID is set correctly at your submission host. Set this environment vari-
able to a timezone location known to PBS Professional. You can get the appropriate zone location from the PBS server
host.

On Linux, use the tzselect command if it is available, or get the zone location from /usr/share/zoneinfo/
zone.tab.

On all other platforms, use the list of libical supported zoneinfo locations available under $PBS_EXEC/lib/
ical/zoneinfo/zones.tab.

The format for PBS_TZID is a timezone location, rather than a timezone POSIX abbreviation. Examples of values for
PBS_TZID are:

America/Los_Angeles

America/Detroit

Europe/Berlin

Asia/Calcutta
UG-10 PBS Professional 19.2.3 User’s Guide

2

Submitting a PBS Job

2.1 Introduction to the PBS Job

To use PBS, you create a batch job, usually just called a job, which you then hand off, or submit, to PBS. A batch job is a
set of commands and/or applications you want to run on one or more execution machines, contained in a file or typed at
the command line. You can include instructions which specify the characteristics such as job name, and resource require-
ments such as memory, CPU time, etc., that your job needs. The job file can be a shell script under Linux, a cmd batch
file under Windows, a Python script, a Perl script, etc.

For example, here is a simple PBS batch job file which requests one hour of time, 400MB of memory, 4 CPUs, and runs
my_application:

#!/bin/sh

#PBS -l walltime=1:00:00

#PBS -l mem=400mb,ncpus=4

./my_application

To submit the job to PBS, you use the qsub command, and give the job script as an argument to qsub. For example, to
submit the script named “my_script”:

qsub my_script

We will go into the details of job script creation in section 2.2, “The PBS Job Script”, on page 14, and job submission in
section 2.3, “Submitting a PBS Job”, on page 18.
PBS Professional 19.2.3 User’s Guide UG-11

Chapter 2 Submitting a PBS Job
2.1.1 Lifecycle of a PBS Job, Briefly

Your PBS job has the following lifecycle:

1. You write a job script

2. You submit the job to PBS

3. PBS accepts the job and returns a job ID to you

4. The PBS scheduler finds the right place and time to run your job, and sends your job to the selected execution host(s)

5. Licenses are obtained

6. On each execution host, PBS creates a job-specific staging and execution directory

7. PBS sets PBS_JOBDIR and the job’s jobdir attribute to the path of the job’s staging and execution directory.

8. On each execution host allocated to the job, PBS creates a job-specific temporary directory.

9. PBS sets the TMPDIR environment variable to the pathname of the temporary directory.

10. If any errors occur during directory creation or the setting of variables, the job is requeued.

11. Input files or directories are copied to the primary execution host

12. If needed, cpusets are created

• If it exists, the prologue runs on the primary execution host, with its current working directory set to PBS_HOME/
mom_priv, and with PBS_JOBDIR and TMPDIR set in its environment.

13. The job runs under your login

14. If it exists, the epilogue runs on the primary execution host, with its current working directory set to the path of the
job’s staging and execution directory, and with PBS_JOBDIR and TMPDIR set in its environment.

15. Output files or directories are copied to specified locations

16. Temporary files and directories are cleaned up

17. Licenses are returned to pool

18. Any cpusets are deleted

For more detail about the lifecycle of a job, see section 3.2.7, “Summary of the Job Lifecycle”, on page 39 and section
3.2.8, “Detailed Description of Job Lifecycle”, on page 39.

2.1.2 Where and How Your PBS Job Runs

Your PBS jobs run on hosts that the administrator has designated to PBS as execution hosts. The PBS scheduler chooses
one or more execution hosts that have the resources that your job requires.

PBS runs your jobs under your user account. This means that your login and logout files are executed for each job, and
some of your environment goes with the job. It’s important to make sure that your login and logout files don’t interfere
with your jobs; see section 1.4.2, “Setting Up Your Linux Environment”, on page 5.

2.1.3 The Job Identifier

After you submit a job, PBS returns a job identifier. Format for a job:

<sequence number>.<server name>
UG-12 PBS Professional 19.2.3 User’s Guide

Submitting a PBS Job Chapter 2
Format for a job array:

<sequence number>[].<server name>.<domain>

You’ll need the job identifier for any actions involving the job, such as checking job status, modifying the job, tracking
the job, or deleting the job.

The largest possible job ID is the 7-digit number 9,999,999. After this has been reached, job IDs start again at zero.

2.1.4 Shell Script(s) for Your Job

When PBS runs your job, PBS starts the top shell that you specify for the job. The top shell defaults to your login shell
on the execution host, but you can set another using the job’s Shell_Path_List attribute. See section 2.3.3.1, “Specify-
ing the Top Shell for Your Job”, on page 19.

Under Linux, if you do not specify a shell inside the job script, PBS defaults to using /bin/sh. If you specify a differ-
ent shell inside the job script, the top shell spawns that shell to run the script; see section 2.3.3.2, “Specifying Job Script
Shell or Interpreter”, on page 20.

Under Windows, the job shell is the same as the top shell.

2.1.5 Scratch Space for Jobs

When PBS runs your job, it creates a temporary scratch directory for the job on each execution host. If your administra-
tor has not specified a temporary directory, the root of the temporary directory is /var/tmp. Your administrator can
specify a root for the temporary directory on each execution host using the $tmpdir MoM parameter. PBS sets the TMP-

DIR environment variable to the full path to the temporary scratch directory.

Under Windows, PBS creates the temporary directory and sets TMP to the value of the Windows %TMPDIR% environ-
ment variable. If your administrator has not specified a temporary directory, PBS creates the temporary directory under
either \winnt\temp or \windows\temp.

PBS removes the directory when the job is finished. The location of the temporary directory is set by PBS; you should
not set TMPDIR.

Your job script can access the scratch space. For example:

Linux:

cd $TMPDIR

Windows:

cd %TMPDIR%

For scratch space for MPI jobs, see section 5.2.3, “Caveats for Using MPIs”, on page 84.

2.1.6 Types of Jobs

PBS allows you to submit standard batch jobs or interactive jobs. The difference is that while the interactive job runs,
you have an interactive session running, giving you interactive access to job processes. There is no interactive access to
a standard batch job. We cover interactive jobs in section 6.11, “Running Your Job Interactively”, on page 123.

2.1.7 Job Input and Output Files

You can tell PBS to copy files or directories from any accessible location to the execution host, and to copy output files
and directories from the execution host wherever you want. We describe how to do this in Chapter 3, "Job Input & Out-
put Files", on page 33.
PBS Professional 19.2.3 User’s Guide UG-13

Chapter 2 Submitting a PBS Job
2.2 The PBS Job Script

2.2.1 Overview of a Job Script

A PBS job script consists of:

• An optional shell specification

• PBS directives

• Job tasks (programs or commands)

2.2.2 Types of Job Scripts

PBS allows you to use any of the following for job scripts:

• A Python, Perl, or other script that can run under Windows or Linux

• A shell script that runs under Linux

• Windows command or PowerShell batch script under Windows

2.2.2.1 Linux Shell Scripts

Since the job file can be a shell script, the first line of a shell script job file specifies which shell to use to execute the
script. Your login shell is the default, but you can change this. This first line can be omitted if it is acceptable for the job
file to be interpreted using the login shell. We recommend that you always specify the shell.

2.2.2.2 Python Job Scripts

PBS allows you to submit jobs using Python scripts under Windows or Linux. PBS includes a Python package, allowing
Python job scripts to run; you do not need to install Python. To run a Python job script:

Linux:

qsub <script name>

Windows:

qsub -S %PBS_EXEC%\bin\pbs_python.exe <script name>

If the path contains any spaces, it must be quoted, for example:

qsub -S "%PBS_EXEC%\bin\pbs_python.exe" <python job script>

You can include PBS directives in a Python job script as you would in a Linux shell script. For example:

% cat myjob.py

#!/usr/bin/python

#PBS -l select=1:ncpus=3:mem=1gb

#PBS -N HelloJob

print “Hello”

Python job scripts can access Win32 APIs, including the following modules:

• Win32api

• Win32con

• Pywintypes
UG-14 PBS Professional 19.2.3 User’s Guide

Submitting a PBS Job Chapter 2
2.2.2.2.i Debugging Python Job Scripts

You can run Python interactively, outside of PBS, to debug a Python job script. You use the Python interpreter to test
parts of your script.

Under Linux, use the -i option to the pbs_python command, for example:

/opt/pbs/default/bin/pbs_python -i <return>

Under Windows, the -i option is not necessary, but can be used. For example, either of the following will work:

C:\Program Files\PBS\exec\bin\pbs_python.exe <return>

C:\Program Files\PBS\exec\bin\pbs_python.exe -i <return>

When the Python interpreter runs, it presents you with its own prompt. For example:

% /opt/pbs/default/bin/pbs_python -i <return>

>> print "hello"

hello

2.2.2.2.ii Python Windows Caveat

If you have Python natively installed, and you need to use the win32api, make sure that you import pywintypes
before win32api, otherwise you will get an error. Do the following:

cmd> pbs_python

>> import pywintypes

>> import win32api

2.2.2.3 Windows Job Scripts

The Windows script can be a .exe or .bat file, or a Python or Perl script.

2.2.2.3.i Requirements for Windows Command Scripts

• Under Windows, comments in the job script must be in ASCII characters.

• Any .bat files that are to be executed within a PBS job script have to be prefixed with "call" as in:
@echo off

call E:\step1.bat

call E:\step2.bat

Without the "call", only the first .bat file gets executed and it doesn't return control to the calling interpreter.

For example, an old job script that contains:

@echo off

E:\step1.bat

E:\step2.bat

should now be:

@echo off

call E:\step1.bat

call E:\step2.bat

2.2.2.3.ii Windows Advice and Caveats

• In Windows, if you use notepad to create a job script, the last line is not automatically newline-terminated. Be sure
to add one explicitly, otherwise, PBS job will get the following error message:
More?
PBS Professional 19.2.3 User’s Guide UG-15

Chapter 2 Submitting a PBS Job
when the Windows command interpreter tries to execute that last line.

• Drive mapping commands are typically put in the job script.

• Do not use xcopy inside a job script. Use copy, robocopy, or pbs_rcp instead. The xcopy command some-
times expects input from the user. Because of this, it must be assigned an input handle. Since PBS does not create the
job process with an input handle assigned, xcopy can fail or behave abnormally if used inside a PBS job script.

• PBS jobs submitted from cygwin execute under the native cmd environment, and not under cygwin.

2.2.3 Setting Job Characteristics

2.2.3.1 Job Attributes

PBS represents the characteristics of a job as attributes. For example, the name of a job is an attribute of that job, stored
in the value of the job’s Job_Name attribute. Some job attributes can be set by you, some can be set only by adminis-
trators, and some are set only by PBS. For a complete list of PBS job attributes, see “Job Attributes” on page 318 of the
PBS Professional Reference Guide. Job attributes are case-insensitive.

2.2.3.2 Job Resources

PBS represents the things that a job might use as resources. For example, the number of CPUs and the amount of mem-
ory on an execution host are resources. PBS comes with a set of built-in resources, and your PBS administrator can
define resources. You can see a list of all built-in PBS resources in Chapter 5, "List of Built-in Resources", on page 255.
Resources are case-insensitive.

2.2.3.3 Setting Job Attributes

You can set job attributes and request resources using the following equivalent methods:

• Using specific options to the qsub command at the command line; for example, -e <path> to set the error path.

• Using PBS directives in the job script; for example, #PBS Error_Path=<path> to set the error path.

These methods have the same functionality. If you give conflicting options to qsub, the last option specified overrides
any others. Options to the qsub command override PBS directives, which override defaults. Some job attributes and
resources have default values; your administrator can set default values for some attributes and resources.

After the job is submitted, you can use the qalter command to change the job’s characteristics.

2.2.3.4 Using PBS Directives

A directive has the directive prefix as the first non-whitespace characters. The default for the prefix is #PBS.

Put all your PBS directives at the top of the script file, above any commands. Any directive after an executable line in the
script is ignored. For example, if your script contains “@echo”, put that line below all PBS directives.

2.2.3.4.i Changing the Directive Prefix

By default, the text string “#PBS” is used by PBS to determine which lines in the job file are PBS directives. The leading
“#” symbol was chosen because it is a comment delimiter to all shell scripting languages in common use on Linux sys-
tems. Because directives look like comments, the scripting language ignores them.
UG-16 PBS Professional 19.2.3 User’s Guide

Submitting a PBS Job Chapter 2
Under Windows, however, the command interpreter does not recognize the ‘#’ symbol as a comment, and will generate a
benign, non-fatal warning when it encounters each “#PBS” string. While it does not cause a problem for the batch job, it
can be annoying or disconcerting to you. If you use Windows, you may wish to specify a different PBS directive, via
either the PBS_DPREFIX environment variable, or the “-C” option to qsub. The qsub option overrides the environ-
ment variable. For example, we can direct PBS to use the string “REM PBS” instead of “#PBS” and use this directive
string in our job script:

REM PBS -l walltime=1:00:00

REM PBS -l select=mem=400mb

REM PBS -j oe

date /t

.\my_application

date /t

Given the above job script, we can submit it to PBS in one of two ways:

set PBS_DPREFIX=REM PBS

qsub my_job_script

or

qsub -C "REM PBS" my_job_script

2.2.3.4.ii Caveats and Restrictions for PBS Directives

• You cannot use PBS_DPREFIX as the directive prefix.

• The limit on the length of a directive string is 4096 characters.

2.2.4 Job Tasks

These can be programs or commands. This is where you can specify an application to be run.

2.2.5 Job Script Names

We recommended that you avoid using special characters in job script names. If you must use them, on Linux you must
escape them using the backslash (“\”) character.

2.2.5.1 How PBS Parses a Job Script

PBS parses a job script in two parts. First, the qsub command scans the script looking for directives, and stops at the
first executable line it finds. This means that if you want qsub to use a directive, it must be above any executable lines.
Any directive below the first executable line is ignored. The first executable line is the first line that is not a directive,
whose first non-whitespace character is not “#”, and is not blank. For information on directives, see section 2.2.3.4,
“Using PBS Directives”, on page 16.

Second, lines in the script are processed by the job shell. PBS pipes the name of the job script file as input to the top
shell, and the top shell executes the job shell, which runs the script. You can specify which shell is the top shell; see sec-
tion 2.3.3.1, “Specifying the Top Shell for Your Job”, on page 19, and, under Linux, which shell you want to run the
script in the first executable line of the script; see section 2.3.3.2, “Specifying Job Script Shell or Interpreter”, on page
20.

2.2.5.1.i Comparison Between Equivalent Linux and Windows Job Scripts

The following Linux and Windows job scripts produce the same results.
PBS Professional 19.2.3 User’s Guide UG-17

Chapter 2 Submitting a PBS Job
Linux:

#!/bin/sh

#PBS -l walltime=1:00:00

#PBS -l select=mem=400mb

#PBS -j oe

date

./my_application

date

Windows:

REM PBS -l walltime=1:00:00

REM PBS -l select=mem=400mb

REM PBS -j oe

date /t

my_application

date /t

The first line in the Windows script does not contain a path to a shell because you cannot specify the path to the shell or
interpreter inside a Windows job script. See section 2.3.3.2, “Specifying Job Script Shell or Interpreter”, on page 20.

The remaining lines of both files are almost identical. The primary differences are in file and directory path specifica-
tions, such as the use of drive letters, and slash vs. backslash as the path separator.

The lines beginning with “#PBS” and “REM PBS” are PBS directives. PBS reads down the job script until it finds the
first line that is not a valid PBS directive, then stops. From there on, the lines in the script are read by the job shell or
interpreter. In this case, PBS sees lines 6-8 as commands to be run by the job shell.

In our examples above, the “-l <resource>=<value>” lines request specific resources. Here, we request 1 hour of
wall-clock time as a job-wide request, and 400 megabytes (MB) of memory in a chunk. We will cover requesting
resources in Chapter 4, "Allocating Resources & Placing Jobs", on page 51.

The “-j oe” line requests that PBS join the stdout and stderr output streams of the job into a single stream. We
will cover merging output in "Merging Output and Error Files” on page 45.

The last three lines are the command lines for executing the programs we wish to run. You can specify as many programs,
tasks, or job steps as you need.

2.3 Submitting a PBS Job

2.3.1 Prerequisites for Submitting Jobs

Before you submit any jobs, set your environment appropriately. Follow the instructions in section 1.4, “Setting Up Your
Environment”, on page 5.
UG-18 PBS Professional 19.2.3 User’s Guide

Submitting a PBS Job Chapter 2
2.3.2 Ways to Submit a PBS Job

You can use the qsub command to submit a normal or interactive job to PBS:

• You can call qsub with a job script; see section 2.3.3, “Submitting a Job Using a Script”, on page 19

• You can call qsub with an executable and its arguments; see section 2.3.4, “Submitting Jobs by Specifying Execut-
able on Command Line”, on page 22

• You can call qsub and give keyboard input; see section 2.3.5, “Submitting Jobs Using Keyboard Input”, on page 22

You can use an Altair front-end product to submit and monitor jobs; go to www.pbsworks.com.

2.3.3 Submitting a Job Using a Script

You submit a job to PBS using the qsub command. For details on qsub, see “qsub” on page 207 of the PBS Profes-
sional Reference Guide. To submit a PBS job, type the following:

• Linux shell script:
qsub <name of shell script>

• Linux Python or Perl script:
qsub <name of Python or Perl job script>

• Windows command script:
qsub <name of job script>

• Windows Python script:
qsub -S %PBS_EXEC%\bin\pbs_python.exe <name of python job script>

If the path contains any spaces, it must be quoted, for example:

qsub -S "%PBS_EXEC%\bin\pbs_python.exe" <name of python job script>

2.3.3.1 Specifying the Top Shell for Your Job

You can can specify the path and name of the shell to use as the top shell for your job. The rules for specifying the top
shell are different for Linux and Windows; do not skip the following subsections numbered 2.3.3.1.i and 2.3.3.1.ii.

The Shell_Path_List job attribute specifies the top shell; the default is your login shell on the execution host. You can
set this attribute using the the following:

• The “-S <path list>” option to qsub

• The #PBS Shell_Path_List=<path list> PBS directive

The option argument path list has this form:

<path>[@<hostname>][,<path>[@<hostname>],...]

You must supply a path list if you attempt to set Shell_Path_List, otherwise, you will get an error. You can specify only
one path for any host you name. You can specify only one path that doesn’t have a corresponding host name.

PBS chooses the path whose host name matches the name of the execution host. If no matching host is found, then PBS
chooses the path specified without a host, if one exists.

2.3.3.1.i Specifying Job Top Shell Under Linux

On Linux, the job’s top shell is the one MoM starts when she starts your job, and the job shell is the shell or interpreter
that runs your job script commands.
PBS Professional 19.2.3 User’s Guide UG-19

Chapter 2 Submitting a PBS Job
Under Linux, you can use any shell such as csh or sh, by specifying qsub -S <path>. You cannot use Perl or
Python as your top shell.

Example 2-1: Using bash:

qsub -S /bin/bash <script name>

2.3.3.1.ii Specifying Job Top Shell Under Windows

On Windows, the job shell is the same as the top shell.

Under Windows, you can specify a shell or an interpreter such as Perl or Python, and if your job script is Perl or Python,
you must specify the language using an option to qsub; you cannot specify it in the job script.

Example 2-2: Running a Python script on Windows:

qsub -S "C:\Program Files\PBS\exec\bin\pbs_python.exe" <script name>

2.3.3.1.iii Caveats for Specifying Job Top Shell

If you specify a relative path for the top shell, the full path must be available in your PATH environment variable on the
execution host(s). We recommend specifying the full path.

2.3.3.2 Specifying Job Script Shell or Interpreter

2.3.3.2.i Specifying Job Script Shell or Interpreter Under Linux

If you don’t specify a shell for the job script, it defaults to /bin/sh. You can use any shell, and you can use an inter-
preter such as Perl or Python.

You specify the shell or interpreter in the first line of your job script. The top shell spawns the specified process, and this
process runs the job script. For example, to use /bin/sh to run the script, use the following as the first line in your job
script:

#!/bin/sh

To use Perl or Python to run your script, use the path to Perl or Python as the first line in your script:

#!/usr/bin/perl

or

#!/usr/bin/python

2.3.3.2.ii Specifying Job Script Shell or Interpreter Under Windows

Under Windows, the job shell or interpreter is the same as the top shell or interpreter. You can specify the top/job shell or
interpreter, but not a separate job shell or interpreter. To use a non-default shell or interpreter, you must specify it using
an option to qsub:

qsub -S <path to shell or interpreter> <script name>

2.3.3.3 Examples of Submitting Jobs Using Scripts

Example 2-3: Our job script is named “myjob”. We can submit it by typing:

qsub myjob
UG-20 PBS Professional 19.2.3 User’s Guide

Submitting a PBS Job Chapter 2
and then PBS returns the job ID:

16387.exampleserver.exampledomain

Example 2-4: The following is the contents of the script named “myjob”. In it, we name the job “testjob”, and run a pro-
gram called “myprogram”:

#!/bin/sh

#PBS -N testjob

./myprogram

Example 2-5: The simplest way to submit a job is to give the script name as the argument to qsub, and hit return:

qsub <job script> <return>

If the script contains the following:

#!/bin/sh

./myapplication

you have simply told PBS to run myapplication.

2.3.3.4 Passing Arguments to Jobs

If you need to pass arguments to a job script, you can do the following:

• Use environment variables in your script, and pass values for the environment variables using -v or -V.

For example, to use myinfile as the input to a.out, your job script contains the following:

#PBS -N myjobname

a.out < $INFILE

You can then use the -V option:

qsub -v INFILE=/tmp/myinfile <job script>

For example, to use myinfile and mydata as the input to a.out, your job script contains the following:

#PBS -N myjobname

cat $INFILE $INDATA | a.out

You can then use the -V option:

qsub -v INFILE=/tmp/myinfile, INDATA=/tmp/mydata <job script>

You can export the environment variable first:

export INFILE=/tmp/myinfile

qsub -V <job script>

• Use a here document. For example:
qsub [option] [option] ... <return>

#PBS <directive>

./jobscript.sh arg1 <^d>

152.examplehost

If you need to pass arguments to a job, you can do any of the following:

• Pipe a shell command to qsub.

For example, to directly pass myinfile and mydata as the input to a.out, type the following, or make them into
a shell script:

echo "a.out myinfile mydata" | qsub -l select=...
PBS Professional 19.2.3 User’s Guide UG-21

Chapter 2 Submitting a PBS Job
For example:

echo "jobscript.sh -a arg1 -b arg2" | qsub -l select=...

For example, to use an environment variable to pass myinfile as the input to a.out, type the following, or make
them into a shell script:

export INFILE=/tmp/myinfile

export INDATA=/tmp/mydata

echo "a.out $INFILE $INDATA" | qsub

• Use qsub --<executable> <arguments to executable>. See section 2.3.4, “Submitting Jobs by
Specifying Executable on Command Line”, on page 22.

2.3.4 Submitting Jobs by Specifying Executable on
Command Line

You can run a PBS job by specifying an executable and its arguments instead of a job script. When you run qsub this
way, it runs the executable directly. It does not start a shell, so no shell initialization scripts are run, and execution paths
and other environment variables are not set. There is not an easy way to run your command in a different directory. You
should make sure that environment variables are set correctly, and you will usually have to specify the full path to the
command.

To submit a job directly, you specify the executable on the command line:

qsub [<options>] -- <executable> [<arguments to executable>] <return>

For example, to run myprog with the arguments a and b:

qsub -- myprog a b <return>

To run myprog with the arguments a and b, naming the job JobA,

qsub -N JobA -- myprog a b <return>

To use environment variables you define earlier:

export INFILE=/tmp/myinfile

export INDATA=/tmp/mydata

qsub -- a.out $INFILE $INDATA

2.3.5 Submitting Jobs Using Keyboard Input

You can specify that qsub read input from the keyboard. If you run the qsub command, with the resource requests on
the command line, and then press “enter” without naming a job file, PBS will read input from the keyboard. (This is often
referred to as a “here document”.) You can direct qsub to stop reading input and submit the job by typing on a line by
itself a control-d (Linux) or control-z, then “enter” (Windows). You get the same behavior with and without a
dash operand.

Note that, under Linux, if you enter a control-c while qsub is reading input, qsub will terminate the process and
the job will not be submitted. Under Windows, however, often the control-c sequence will, depending on the com-
mand prompt used, cause qsub to submit the job to PBS. In such case, a control-break sequence will usually ter-
minate the qsub command.

qsub [<options>] [-] <return>

[<directives>]

[<tasks>]

ctrl-D
UG-22 PBS Professional 19.2.3 User’s Guide

Submitting a PBS Job Chapter 2
2.3.6 Submitting Jobs Under Windows

2.3.6.1 Passwords

When running PBS in a password-protected Windows environment, you will need to specify to PBS the password needed
in order to run your jobs. There are two methods of doing this: (1) by providing PBS with a password once to be used for
all jobs (“single signon method”), or (2) by specifying the password for each job when submitted (“per job method”).
Check with your system administrator to see which method was configured at your site.

2.3.6.1.i Single-Signon Password Method

To provide PBS with a password to be used for all your PBS jobs, use the pbs_password command. This command
can be used whether or not you have jobs enqueued in PBS. The command usage syntax is:

pbs_password [-s <server>] [-r] [-d] [<username>]

When no options are given to pbs_password, the password credential on the default PBS server for the current user,
i.e. the user who executes the command, is updated to the prompted password. Any user jobs previously held due to an
invalid password are not released.

The available options to pbs_password are:

-r

Any user jobs previously held due to an invalid password are released.

-s server

Allows you to specify server where password will be changed.

-d

Deletes the password.

user

The password credential of user user is updated to the prompted password. If user is not the current user, this
action is only allowed if:

1. The current user is root or admin.

2. User username has given the current user explicit access via the ruserok() mechanism:

a The hostname of the machine from which the current user is logged in appears in the server's
hosts.equiv file, or

b The current user has an entry in user's HOMEDIR\.rhosts file.

Note that pbs_password encrypts the password obtained from you before sending it to the PBS server. The
pbs_password command does not change your password on the current host, only the password that is cached in
PBS.

The pbs_password command is supported only on Windows and all supported Linux platforms on x86 and x86_64.

The pbs_password command has no effect on running jobs. Queued jobs use the new password.

2.3.6.1.ii Per-job Password Method

If you are running in a password-protected Windows environment, but the single-signon method has not been configured
at your site, then you will need to supply a password with the submission of each job. You can do this via the qsub com-
mand, with the -Wpwd option, and supply the password when prompted.

qsub -Wpwd <job script>

You will be prompted for the password , which is passed on to the program, then encrypted and saved securely for use by
the job. The password should be enclosed in double quotes.
PBS Professional 19.2.3 User’s Guide UG-23

Chapter 2 Submitting a PBS Job
Keep in mind that in a multi-host job, the password supplied will be propagated to all the sister hosts. This requires that
the password be the same on your accounts on all the hosts. The use of domain accounts for a multi-host job will be ideal
in this case.

Accessing network share drives/resources within a job session also requires that you submit the job with a password via
qsub -W pwd.

The -Wpwd option to the qsub command is supported only on Windows and all supported Linux platforms on x86 and
x86_64.

2.4 Job Submission Recommendations and Advice

2.4.1 Trapping Signals in Script

You can trap signals in your job script. For example, you can trap preemption and suspension signals.

If you want to trap the signal in your job script, the signal may need to be trapped by all of the job’s shells, depending on
the signal.

The signal TERM is useful, because it is ignored by shells, but you can trap it and do useful things such as write out sta-
tus.

Example 2-6: Ignore the listed signals:

trap "" 1 2 3 15

Example 2-7: Call the function “goodbye” for the listed signals:

trap goodbye 1 2 3 15

2.5 Job Submission Options

The table below lists the options to the qsub command, and points to an explanation of each:

Table 2-1: Options to the qsub Command

Option Function and Page Reference

-A <account_string> "Specifying Accounting String” on page 30

-a <date_time> "Deferring Execution” on page 121

-C “<directive prefix>” "Changing the Directive Prefix” on page 16

-c <interval> "Using Checkpointing” on page 115

-e <path> "Paths for Output and Error Files” on page 44

-G "Submitting Interactive GUI Jobs on Windows” on page 127

-h "Holding and Releasing Jobs” on page 117

-I "Running Your Job Interactively” on page 123

-J X-Y[:Z] "Submitting a Job Array” on page 150

-j <join> "Merging Output and Error Files” on page 45

-k <keep> "Keeping Output and Error Files on Execution Host” on page 46
UG-24 PBS Professional 19.2.3 User’s Guide

Submitting a PBS Job Chapter 2
-l <resource list> "Requesting Resources” on page 52

-M <user list> "Setting Email Recipient List” on page 27

-m <mail options> "Specifying Email Notification” on page 26

-N <name> "Specifying Job Name” on page 28

-o <path> "Paths for Output and Error Files” on page 44

-p <priority> "Setting Priority for Your Job” on page 122

-P <project> "Specifying a Project for a Job” on page 28

-q <destination> "Specifying Server and/or Queue” on page 30

-r <value> "Allowing Your Job to be Re-run” on page 120

-R <remove options> "Avoiding Creation of stdout and/or stderr” on page 45

-S <path list "Specifying the Top Shell for Your Job” on page 19

-u <user list> "Specifying Job Username” on page 28

-V "Exporting All Environment Variables” on page 128

-v <variable list> "Exporting Specific Environment Variables” on page 128

-W <attribute>=<value> "Setting Job Attributes” on page 16

-W block=true "Making qsub Wait Until Job Ends” on page 122

-W depend=<list> "Using Job Dependencies” on page 109

-W group_list=<list> "Specifying Job Group ID” on page 29

-W pwd=”<password>” "Per-job Password Method” on page 23

-W
release_nodes_on_stageout=<value>

"Releasing Unneeded Vnodes from Your Job” on page 129

-W run_count=<value> "Controlling Number of Times Job is Re-run” on page 121

-W sandbox=<value> "Staging and Execution Directory: User Home vs. Job-specific”
on page 33

-W stagein=<list> "Input/Output File Staging” on page 33

-W stageout=<list> "Input/Output File Staging” on page 33

-W umask=<value> "Changing Linux Job umask” on page 47

-X "Receiving X Output from Interactive Linux Jobs” on page 126

-z "Suppressing Printing Job Identifier to stdout” on page 31

Table 2-1: Options to the qsub Command

Option Function and Page Reference
PBS Professional 19.2.3 User’s Guide UG-25

Chapter 2 Submitting a PBS Job
2.5.1 Specifying Email Notification

For each job, PBS can send mail to designated recipients when that job or subjob reaches specific points in its lifecycle.
There are points in the life of the job where PBS always sends email, and there are points where you can choose to
receive email; see the table below for a list.

PBS always sends you mail when your job or subjob is deleted. For job arrays, PBS sends one email per subjob.

You can restrict the number of job-related emails PBS sends when you delete jobs or subjobs; see section 2.5.1.3,
“Restricting Number of Job Deletion Emails”, on page 27.

2.5.1.1 Specifying Job Lifecycle Email Points

The set of points where PBS sends mail is specified in the Mail_Points job attribute. When you use the -j suboption
with one or more of the other sub-options, PBS sends mail for each subjob; without this suboption, PBS sends mail only
for jobs and parent array jobs. You can set the Mail_Points attribute using the following methods:

• The -m <mail points> option to qsub

• The -m <mail points> option to qalter

• The #PBS -WMail_Points=<mail points> PBS directive

The mail points argument is a string which consists of either:

• The single character “n”

• One or more of the characters “a”, “b”, and “e” with optional “j”.

Table 2-2: Points in Job/Reservation Lifecycle when PBS Sends Mail

Point in Lifecycle Always Sent or Optional?

Job cannot be routed, either because the job makes
too many routing hops or because all destinations
reject it

Optional. Mail is sent when -m a is specified.

For subjobs, mail is sent when -m aj is specified.

Job is deleted by job owner Optional; depends on qdel -Wsuppress_email

Job is deleted by someone other than job owner Always

Job or subjob is aborted by PBS:

Job or subjob cannot be executed because of bad
user/group account, bad checkpoint/restart file, sys-
tem error, bad resource request, or bad dependency

Optional. Mail is sent when -m a is specified.

For subjobs, mail is sent when -m aj is specified.

Job is held by PBS with bad password hold Always

Job begins execution Optional

Job ends execution Optional

Stagein fails Always

All file stageout attempts fail Always

Reservation is confirmed or denied Always
UG-26 PBS Professional 19.2.3 User’s Guide

Submitting a PBS Job Chapter 2
The following table lists the sub-options to the -m option:

Example 2-8: PBS sends mail when the job is aborted or ends:

qsub -m ae my_job

#PBS -m ae

2.5.1.2 Setting Email Recipient List

The list of recipients to whom PBS sends mail is specified in the Mail_Users job attribute. You can set the Mail_Users
attribute using the following methods:

• The -M <mail recipients> option to qsub

• The #PBS -WMail_Users=<mail recipients> PBS directive

The mail recipients argument is a list of user names with optional hostnames in this format:

<username>[@<hostname>][,<username>[@<hostname>],...]

For example:

qsub -M user1@mydomain.com my_job

When you set this option for a job array, PBS sets the option for each subjob, and sends mail for each subjob.

2.5.1.3 Restricting Number of Job Deletion Emails

By default, when you delete a job or subjob, PBS sends you email. You can use qdel -
Wsuppress_email=<limit> to restrict the number of emails sent to you each time you use qdel. This option
behaves as follows:

limit >=1

You receive at most limit emails.

limit = 0

PBS ignores this option.

limit =-1

You receive no emails.

Table 2-3: Sub-options to m Option

Suboption Meaning

n Do not send mail

a Send mail when job or subjob is aborted by batch system. This is the default

b Send mail when job or subjob begins execution

Example:

Begun execution

e Send mail when job or subjob ends execution

j Send mail for subjobs. Must be combined with one or more of a, b, or e sub-options.
PBS Professional 19.2.3 User’s Guide UG-27

Chapter 2 Submitting a PBS Job
2.5.1.4 Windows Caveats for Email

PBS on Windows can send email only to addresses that specify an actual hostname that accepts port 25 (sendmail)
requests. For example, if you use the following on Windows:

qsub -M user1@host.mydomain.com

The host named host.mydomain.com must accept port 25 connections.

2.5.2 Specifying Job Name

If you submit a job using a script without specifying a name for the job, the name of the job defaults to the name of the
script. If you submit a job without using a script and without specifying a name for the job, the job name is STDIN.

You can specify the name of a job using the following methods:

• Using qsub -N <job name>

• Using #PBS -N <job name>

• Using #PBS -WJob_Name=<job name>

For example:

qsub -N myName my_job

#PBS -N myName

#PBS -WJob_Name=my_job

The job name can be up to 236 characters in length, and must consist of printable, non-whitespace characters. The first
character must be alphabetic, numeric, hyphen, underscore, or plus sign.

2.5.3 Specifying a Project for a Job

In PBS, a project is a way to organize jobs independently of users and groups. You can use a project as a tag to group a
set of jobs. Each job can be a member of up to one project.

Projects are not tied to users or groups. One user or group may run jobs in more than one project. For example, user Bob
runs JobA in ProjectA and JobB in ProjectB. User Bill runs JobC in ProjectA. User Tom runs JobD in ProjectB. Bob
and Tom are in Group1, and Bill is in Group2.

A job’s project attribute specifies the job’s project. See “project” on page 330 of the PBS Professional Reference Guide.
You can set the job’s project attribute in the following ways:

• At submission:

• Using qsub -P <project name>

• Via #PBS project=<project name>

• After submission, via qalter -P <project name>; see “qalter” on page 124 of the PBS Professional Refer-
ence Guide

2.5.4 Specifying Job Username

By default PBS runs your job under the username with which you log in. You may need to run your job under a different
username depending on which PBS server runs the job. You can specify a list of user names under which the job can run.
All but one of the entries in the list must specify the PBS server hostname as well, so that PBS can choose which user-
name to use by looking at the hostname. You can include one entry in the list that does not specify a hostname; PBS uses
this in the case where the job was sent to a server that is not in your list.
UG-28 PBS Professional 19.2.3 User’s Guide

Submitting a PBS Job Chapter 2
The list of user names is stored in the User_List job attribute. The value of this attribute defaults to the user name under
which you logged in. There is no limit to the length of the attribute.

List entries are in the following format:

<username>@<hostname>[,<username>@<hostname> ...][,<username>]

You can set the value of User_List in the following ways:

• You can use qsub -u <username>

• You can use a directive: #PBS User_List=<username list>

Example 2-9: Our user is UserS on the submission host HostS, UserA on server ServerA, and UserB on server ServerB,
and is UserC everywhere else. Note that this user must be UserA on all ExecutionA and UserB on all ExecutionB
machines. Then our user can use “qsub -u UserA@ServerA,UserB@ServerB,UserC” for the job. The job
owner will always be UserS. On Linux, UserA, UserB, and UserC must each have .rhosts files at their servers
that list UserS.

2.5.4.1 Caveats for Changing Job Username

• Wherever your job runs, you must have permission to run the job under the specified user name. See section 1.4.4,
“Setting Up Your User Authorization”, on page 8.

• User names are limited to 256 characters.

2.5.5 Specifying Job Group ID

Your username can belong to more than one group, but each PBS job is only associated with one of those groups. By
default, the job runs under the primary group. The job’s group is specified in the group_list job attribute. You can
change the group under which your job runs on the execution host either on the command line or by using a PBS direc-
tive:

qsub -W group_list=<group list>

#PBS group_list=<group list>

For example:

qsub -W group_list=grpA,grpB@jupiter my_job

The <group list> argument has the following form:

<group>[@<hostname>][,<group>[@<hostname>],...]

You can specify only one group name per host.

You can specify only one group without a corresponding host; that group name is used for execution on any host not
named in the argument list.

The group_list defaults to the primary group of the username under which the job runs.

2.5.5.1 Group Names Under Windows

Under Windows, the primary group is the first group found for the username by PBS when querying the accounts data-
base.

Under Windows, the default group assigned is determined by what the Windows API NetUserGetLocalGroup() and
NetUserGetGroup() return as first entry. PBS checks the former output (the local groups) and returns the first group it
finds. If the former call does not return any value, then it proceeds to the latter call (the Global groups). If PBS does not
find any output on the latter call, it uses the default “Everyone”.

We do not recommend depending on always getting “Users” in this case. Sometimes you may submit a job without the –
Wgroup_list option, and get a default group of “None” assigned to your job.
PBS Professional 19.2.3 User’s Guide UG-29

Chapter 2 Submitting a PBS Job
2.5.6 Specifying Accounting String

You can associate an accounting string with your job by setting the value of the Account_Name job attribute. This
attribute has no default value. You can set the value of Account_Name at the command line or in a PBS directive:

qsub -A <accounting string>

#PBS Account_Name=<accounting string>

The <accounting string> can be any string of characters; PBS does not attempt to interpret it.

2.5.7 Specifying Server and/or Queue

By default, PBS provides a default server and a default queue, so that jobs submitted without a server or queue specifica-
tion end up in the default queue at the default server.

If your administrator has configured the PBS server with more than one queue, and has configured those queues to accept
jobs from you, you can submit your job to a non-default queue.

• If you will submit jobs mainly to one non-default server, set the PBS_SERVER environment variable to the name
of your preferred server. Once this environment variable is set to your preferred server, you don’t need to specify
that server when you submit a job to it.

• If you will submit jobs mostly to the default server, and just want to submit this one to a specific queue at a non-
default server:

• Use qsub -q <queue name>@<server name>

• Use #PBS -q <queue name>@<server name>

• If you will submit jobs mostly to the default server, and just want to submit this one to the default queue at a non-
default server:

• Use qsub -q @<server name>

• Use #PBS -q @<server name>

• You can submit your job to a non-default queue at the default server, or the server given in the PBS_SERVER envi-
ronment variable if it is defined:

• Use qsub -q <queue name>

• Use #PBS -q <queue name>

If the PBS server has no default queue and you submit a job without specifying a queue, the qsub command will com-
plain.

PBS or your administrator may move your job from one queue to another. You can see which queue has your job using
qstat [job ID]. The job’s queue attribute contains the name of the queue where the job resides.

Examples:

qsub -q queue my_job

qsub -q @server my_job

#PBS -q queue1

qsub -q queue1@myserver my_job

qsub -q queue1@myserver.mydomain.com my_job

2.5.7.1 Using or Avoiding Dedicated Time

Dedicated time is one or more specific time periods defined by the administrator. These are not repeating time periods.
Each one is individually defined.
UG-30 PBS Professional 19.2.3 User’s Guide

Submitting a PBS Job Chapter 2
During dedicated time, the only jobs PBS starts are those in special dedicated time queues. PBS schedules non-dedicated
jobs so that they will not run over into dedicated time. Jobs in dedicated time queues are also scheduled so that they will
not run over into non-dedicated time. PBS will attempt to backfill around the dedicated-non-dedicated time borders.

PBS uses walltime to schedule within and around dedicated time. If a job is submitted without a walltime to a non-dedi-
cated-time queue, it will not be started until all dedicated time periods are over. If a job is submitted to a dedicated-time
queue without a walltime, it will never run.

To submit a job to be run during dedicated time, use the -q <queue name> option to qsub and give the name of the
dedicated-time queue you wish to use as the queue name. Queues are created by the administrator; see your administra-
tor for queue name(s).

2.5.8 Suppressing Printing Job Identifier to stdout

To suppress printing the job identifier to standard output, use the -z option to qsub. You can use it at the command line
or in a PBS directive:

qsub -z my_job

#PBS -z

There is no associated job attribute for this option.

2.5.9 Running qsub in the Foreground

Normally, qsub runs in the background. You can run it in the foreground by using the -f option. By default, qsub
attempts to communicate with a background qsub daemon that may have been instantiated from an earlier invocation.
This background daemon can be holding onto an authenticated server connection, speeding up performance.

This option can be helpful when you are submitting a very short job which submits another job, or when you are running
codes written in-house for Windows.
PBS Professional 19.2.3 User’s Guide UG-31

Chapter 2 Submitting a PBS Job
UG-32 PBS Professional 19.2.3 User’s Guide

3

Job Input & Output Files

3.1 Introduction to Job File I/O in PBS

PBS allows you to manage input files, output files, standard output, and standard error. PBS has two mechanisms for
handling job files; you use staging for input and output files, and you select whether stdout and/or stderr are copied
back using the Keep_Files job attribute.

3.2 Input/Output File Staging

File staging is a way to specify which input files should be copied onto the execution host before the job starts, and which
output files should be copied off the execution host when it finishes.

3.2.1 Staging and Execution Directory: User Home vs. Job-
specific

The job’s staging and execution directory is the directory to which files are copied before the job runs, and from which
output files are copied after the job has finished. This directory is either your home directory or a job-specific directory
created by PBS just for this job. If you use job-specific staging and execution directories, you don’t need to have a home
directory on each execution host, as long as those hosts are configured properly. In addition, each job gets its own stag-
ing and execution directory, so you can more easily avoid filename collisions.

This table lists the differences between using your home directory for staging and execution and using a job-specific
staging and execution directory created by PBS.

Table 3-1: Differences Between User Home and Job-specific Directory for Staging
and Execution

Question Regarding Action,
Requirement, or Setting

User Home Directory
Job-specific

Directory

Does PBS create a job-specific staging and execution
directory?

No Yes

User’s home directory must exist on execution
host(s)?

Yes No

Standard out and standard error automatically deleted
when qsub -k option is used?

No Yes

When are staged-out files are deleted? Successfully staged-out files are
deleted; others go to “undelivered”

Only after all are suc-
cessfully staged out

Staging and execution directory deleted after job fin-
ishes?

No Yes

What is job’s sandbox attribute set to? HOME or not set PRIVATE
PBS Professional 19.2.3 User’s Guide UG-33

Chapter 3 Job Input & Output Files
3.2.2 Using Job-specific Staging and Execution Directories

3.2.2.1 Setting the Job Staging and Execution Directory

The job’s sandbox attribute controls whether PBS creates a unique job-specific staging and execution directory for this
job. If the job’s sandbox attribute is set to PRIVATE, PBS creates a unique staging and execution directory for the job.
If sandbox is unset, or is set to HOME, PBS uses your home directory as the job’s staging and execution directory. By
default, the sandbox attribute is not set.

You can set the sandbox attribute via qsub, or through a PBS directive. For example:

qsub -Wsandbox=PRIVATE

The job’s sandbox attribute cannot be altered while the job is executing.

3.2.2.2 The jobdir Job Attribute and the PBS_JOBDIR Environment

Variable

The job’s jobdir attribute is a read-only attribute, set to the pathname of the job’s staging and execution directory on the
primary host. You can view this attribute by using qstat -f, only while the job is executing. The value of jobdir is
not retained if a job is rerun; it is undefined whether jobdir is visible or not when the job is not executing.

The environment variable PBS_JOBDIR is set to the pathname of the staging and execution directory on the primary
execution host. PBS_JOBDIR is added to the job script process, any job tasks, and the prologue and epilogue.

Table 3-2: Effect of Job sandbox Attribute on Location of Staging and Execution
Directory

Job s sandbox
attribute

Effect

not set Job’s staging and execution directory is your home directory

HOME Job’s staging and execution directory is your home directory

PRIVATE Job’s staging and execution directory is a job-specific directory created by PBS.

If the qsub -k option is used, output and error files are retained on the primary execution host
in the staging and execution directory. This directory is removed, along with all of its contents,
when the job finishes.
UG-34 PBS Professional 19.2.3 User’s Guide

Job Input & Output Files Chapter 3
3.2.3 Attributes and Environment Variables Affecting
Staging

The following attributes and environment variables affect staging and execution.

3.2.4 Specifying Files To Be Staged In or Staged Out

You can specify files to be staged in before the job runs and staged out after the job runs by setting the job’s stagein and
stageout attributes. You can use options to qsub, or directives in the job script:

qsub -Wstagein=<stagein file list> -Wstageout=<stageout file list>

#PBS -W stagein=<file list>

#PBS -W stageout=<file list>

For both stagein and stageout, the file list has the following syntax:

<execution path>@<storage host>:<storage path>[,...]

The name execution path is the name of the file in the job’s staging and execution directory (on the execution host). The
execution path can be relative to the job’s staging and execution directory, or it can be an absolute path.

The ‘@’ character separates the execution specification from the storage specification.

Table 3-3: Attributes and Environment Variables Affecting Staging

Job s Attribute or
Environment

Variable
Effect

sandbox attribute Determines whether PBS uses user’s home directory or creates job-specific directory for
staging and execution. User-settable per job via qsub -W or through a PBS directive.

stagein attribute Sets list of files or directories to be staged in. User-settable per job via qsub -W or
through a PBS directive.

stageout attribute Sets list of files or directories to be staged out. User-settable per job via qsub -W or
through a PBS directive.

Keep_Files attribute Determines whether output and/or error files remain on execution host. User-settable per
job via qsub -k or through a PBS directive. If the Keep_Files attribute is set to o and/
or e (output and/or error files remain in the staging and execution directory) and the job’s
sandbox attribute is set to PRIVATE, standard out and/or error files are removed, when
the staging directory is removed at job end along with its contents.

jobdir attribute Set to pathname of staging and execution directory on primary execution host. Read-only;
viewable via qstat -f.

Remove_Files attribute Specifies whether standard output and/or standard error files are automatically removed
(deleted) upon job completion.

PBS_JOBDIR environ-
ment variable

Set to pathname of staging and execution directory on primary execution host. Added to
environments of job script process, job tasks, and prologue and epilogue.

TMPDIR environment
variable

Location of job-specific scratch directory.
PBS Professional 19.2.3 User’s Guide UG-35

Chapter 3 Job Input & Output Files
The name storage path is the file name on the host specified by storage host. For stagein, this is the location where the
input files come from. For stageout, this is where the output files end up when the job is done. You must specify a host-
name. The name can be absolute, or it can be relative to your home directory on the machine named storage host.

For stagein, the direction of travel is from storage path to execution path.

For stageout, the direction of travel is from execution path to storage path.

The following example shows how to use a directive to stagein a file named grid.dat located in the directory /u/
user1 on the host called serverA. The staged-in file is copied to the staging and execution directory and given the name
dat1. Since execution path is evaluated relative to the staging and execution directory, it is not necessary to specify a
full pathname for data1.

#PBS -W stagein=data1@serverA:/u/user1/grid.dat ...

To use the qsub option to stage in the file residing on myhost, in /Users/myhome/mydata/data1, calling it
input_data1 in the staging and execution directory:

qsub -W stagein=input_data1@myhost:/Users/myhome/mydata/data1

To stage more than one file or directory, use a comma-separated list of paths, and enclose the list in double quotes. For
example, to stage two files data1 and data2 in:

qsub -W stagein="input1@hostA:/myhome/data1,input2@hostA:/myhome/data1"

3.2.5 Caveats and Requirements for Staging

3.2.5.1 Linux: Staging and Special Characters

If you need to use special characters, such as parentheses, in your file or directory names, enclose that part of the path in
an extra layer of quotes. Syntax:

-W stageout="<execution path> @<storage host>:'<storage path>'"

Example:

-W stageout="myoutfile@myhost:'/home/user1/outfile(1234)'"

3.2.5.2 Windows: Staging and Special Characters or Paths

3.2.5.2.i Special Characters

Under Windows, if your path contains special characters such as spaces, backslashes (\), colons (:), or drive letter specifi-
cations, enclose the staging specification in double quotes. For example, to stage the grid.dat file on drive D at hostB to
the execution file named “dat1” on drive C:

qsub -W stagein="dat1@hostB:D\Documents and Settings\grid.dat"

3.2.5.2.ii Using UNC Paths

If you use a UNC path to stage in or out, the hostname is optional. If you use a non-UNC path, the hostname is required.

3.2.5.3 Path Names for Staging

• It is advisable to use an absolute pathname for the storage path. Remember that the path to your home directory
may be different on each machine, and that when using sandbox = PRIVATE, you may or may not have a home
directory on all execution machines.

• Always use a relative pathname for execution path when the job’s staging and execution directory is created by PBS,
meaning when using a job-specific staging and execution directory, do not use an absolute path in execution
path.
UG-36 PBS Professional 19.2.3 User’s Guide

Job Input & Output Files Chapter 3
3.2.5.4 Required Permissions

You must have read permission for any files or directories that you will stage in, and write permission for any files or
directories that you will stage out.

3.2.5.5 Warning About Ampersand

You cannot use the ampersand (“&”) in any staging path. Staging will fail.

3.2.5.6 Interactive Jobs and File I/O

When an interactive job finishes, staged files may not have been copied back yet.

3.2.5.7 Copying Directories Into and Out Of the Staging and

Execution Directory

You can stage directories into and out of the staging and execution directory the same way you stage files. The storage
path and execution path for both stagein and stageout can be a directory. If you stagein or stageout a directory, PBS cop-
ies that directory along with all of its files and subdirectories. At the end of the job, the directory, including all files and
subdirectories, is deleted. This can create a problem if multiple jobs are using the same directory.

3.2.5.8 Wildcards In File Staging

You can use wildcards when staging files and directories, according to the following rules.

• The asterisk “*” matches one or more characters.

• The question mark “?” matches a single character.

• All other characters match only themselves.

• Wildcards inside of quote marks are expanded.

• Wildcards cannot be used to match Linux files that begin with period “.” or Windows files that have the “SYSTEM”
or “HIDDEN” attributes.

• When using the qsub command line on Linux, you must prevent the shell from expanding wildcards. For some
shells, you can enclose the pathnames in double quotes. For some shells, you can use a backslash before the wild-
card.

• Wildcards can only be used in the source side of a staging specification. This means they can be used in the storage
path specification for stagein, and in the execution path specification for stageout.

• When staging using wildcards, the destination must be a directory. If the destination is not a directory, the result is
undefined. So for example, when staging out all .out files, you must specify a directory for storage path.

• Wildcards can only be used in the final path component, i.e. the basename.

• When wildcards are used during stagein, PBS will not automatically delete staged files at job end. Note that if PBS
created the staging and execution directory, that directory and all its contents are deleted at job end.

3.2.6 Examples of File Staging

Example 3-1: Stage out all files from the execution directory to a specific directory:

Linux

-W stageout=*@myworkstation:/user/project1/case1
PBS Professional 19.2.3 User’s Guide UG-37

Chapter 3 Job Input & Output Files
Windows

-W stageout=*@mypc:E:\project1\case1

Example 3-2: Stage out specific types of result files and disregard the scratch and other temporary files after the job ter-
minates. The result files that are interesting for this example end in '.dat':

Linux

-W stageout=*.dat@myworkstation:project3/data

Windows

-W stageout=*.dat@mypc:C:\project\data

Example 3-3: Stage in all files from an application data directory to a subdirectory:

Linux

-W stagein=jobarea@myworkstation:crashtest1/*

Windows

-W stagein=jobarea@mypc:E:\crashtest1*

Example 3-4: Stage in data from files and directories matching “wing*”:

Linux

-W stagein=.@myworkstation:848/wing*

Windows

-W stagein=.@mypc:E:\flowcalc\wing*

Example 3-5: Stage in .bat and .dat files to job area:

Linux:

-W stagein=jobarea@myworkstation:/users/me/crash1.?at

Windows:

-W stagein=jobarea@myworkstation:C:\me\crash1.?at

3.2.6.1 Example of Using Job-specific Staging and Execution

Directories

In this example, you want the file “jay.fem” to be delivered to the job-specific staging and execution directory given in
PBS_JOBDIR, by being copied from the host “submithost”. The job script is executed in PBS_JOBDIR and “jay.out”
is staged out from PBS_JOBDIR to your home directory on the submission host (i.e., “storage host”):

qsub -Wsandbox=PRIVATE -Wstagein=jay.fem@submithost:jay.fem -Wstageout=jay.out@submithost:jay.out
UG-38 PBS Professional 19.2.3 User’s Guide

Job Input & Output Files Chapter 3
3.2.7 Summary of the Job Lifecycle

This is a summary of the steps performed by PBS. The steps are not necessarily performed in this order.

• On each execution host, if specified, PBS creates a job-specific staging and execution directory.

• PBS sets PBS_JOBDIR and the job’s jobdir attribute to the path of the job’s staging and execution directory.

• On each execution host allocated to the job, PBS creates a job-specific temporary directory.

• PBS sets the TMPDIR environment variable to the pathname of the temporary directory.

• If any errors occur during directory creation or the setting of variables, the job is requeued.

• PBS stages in any files or directories.

• The prologue is run on the primary execution host, with its current working directory set to PBS_HOME/mom_priv,
and with PBS_JOBDIR and TMPDIR set in its environment.

• The job is run as you on the primary execution host.

• The job’s associated tasks are run as you on the execution host(s).

• The epilogue is run on the primary execution host, with its current working directory set to the path of the job’s stag-
ing and execution directory, and with PBS_JOBDIR and TMPDIR set in its environment.

• PBS stages out any files or directories.

• PBS removes standard error and/or standard output according to the value of the job’s Remove_Files attribute.

• PBS removes any staged files or directories.

• PBS removes any job-specific staging and execution directories and their contents, and all TMPDIRs and their con-
tents.

• PBS writes the final job accounting record and purges any job information from the server’s database.

3.2.8 Detailed Description of Job Lifecycle

3.2.8.1 Creation of TMPDIR

For each host allocated to the job, PBS creates a job-specific temporary scratch directory for the job. If the temporary
scratch directory cannot be created, the job is aborted.

3.2.8.2 Choice of Staging and Execution Directories

If the job’s sandbox attribute is set to PRIVATE, PBS creates job-specific staging and execution directories for the job.
If the job’s sandbox attribute is set to HOME, or is unset, PBS uses your home directory for staging and execution.

3.2.8.2.i Job-specific Staging and Execution Directories

If the staging and execution directory cannot be created the job is aborted. If PBS fails to create a staging and execution
directory, see the system administrator.

You should not depend on any particular naming scheme for the new directories that PBS creates for staging and execu-
tion.

3.2.8.2.ii User Home Directory as Staging and Execution Directory

You must have a home directory on each execution host. The absence of your home directory is an error and causes the
job to be aborted.
PBS Professional 19.2.3 User’s Guide UG-39

Chapter 3 Job Input & Output Files
3.2.8.3 Setting Environment Variables and Attributes

PBS sets PBS_JOBDIR and the job’s jobdir attribute to the pathname of the staging and execution directory. The
TMPDIR environment variable is set to the pathname of the job-specific temporary scratch directory.

3.2.8.4 Staging Files Into Staging and Execution Directories

PBS evaluates execution path and storage path relative to the staging and execution directory given in
PBS_JOBDIR, whether this directory is your home directory or a job-specific directory created by PBS. PBS copies the
specified files and/or directories to the job’s staging and execution directory.

3.2.8.5 Running the Prologue

The MoM’s prologue is run on the primary host as root, with the current working directory set to PBS_HOME/
mom_priv, and with PBS_JOBDIR and TMPDIR set in its environment.

3.2.8.6 Job Execution

PBS runs the job script on the primary host as you. PBS also runs any tasks created by the job as you. The job script and
tasks are executed with their current working directory set to the job's staging and execution directory, and with
PBS_JOBDIR and TMPDIR set in their environment.

3.2.8.7 Standard Out and Standard Error

The job's stdout and stderr files are created directly in the job's staging and execution directory on the primary exe-
cution host.

3.2.8.7.i Job-specific Staging and Execution Directories

If the qsub -k option is used, the stdout and stderr files will not be automatically copied out of the staging and
execution directory at job end - they will be deleted when the directory is automatically removed.

3.2.8.7.ii User Home Directory as Staging and Execution Directory

If the -k option to qsub is used, standard out and/or standard error files are retained on the primary execution host
instead of being returned to the submission host, and are not deleted after job end.

3.2.8.8 Running the Epilogue

PBS runs the epilogue on the primary host as root. The epilogue is executed with its current working directory set to the
job's staging and execution directory, and with PBS_JOBDIR and TMPDIR set in its environment.

3.2.8.9 Staging Files Out and Removing Execution Directory

When PBS stages files out, it evaluates execution path and storage path relative to PBS_JOBDIR. Files that
cannot be staged out are saved in PBS_HOME/undelivered.

3.2.8.9.i Job-specific Staging and Execution Directories

If PBS created job-specific staging and execution directories for the job, it cleans up at the end of the job. The staging
and execution directory and all of its contents are removed, on all execution hosts.
UG-40 PBS Professional 19.2.3 User’s Guide

Job Input & Output Files Chapter 3
3.2.8.10 Removing TMPDIRs and Files

PBS removes all TMPDIRs, along with their contents. If Remove_Files specifies output and/or error files, these files
are removed.

3.2.9 Staging with Job Arrays

File staging is supported for job arrays. See “File Staging for Job Arrays” on page 151.

3.2.10 Stagein and Stageout Failure

3.2.10.1 File Stagein Failure

When stagein fails, the job is placed in a 30-minute wait to allow you time to fix the problem. Typically this is a missing
file or a network outage. Email is sent to the job owner when the problem is detected. Once the problem has been
resolved, the job owner or a PBS Operator may remove the wait by resetting the time after which the job is eligible to be
run via the -a option to qalter. The server will update the job’s comment with information about why the job was put
in the wait state. When the job is eligible to run, it may run on different vnodes.

3.2.10.2 File Stageout Failure

When stageout encounters an error, there are three retries. PBS waits 1 second and tries again, then waits 11 seconds and
tries a third time, then finally waits another 21 seconds and tries a fourth time. Email is sent to the job owner if all
attempts fail. Files that cannot be staged out are saved in PBS_HOME/undelivered. See section 3.3.8.1, “Non-deliv-
ery of Output”, on page 48.

3.3 Managing Output and Error Files

3.3.1 Default Behavior For Output and Error Files

By default, PBS copies the standard output (stdout) and standard error (stderr) files back to $PBS_O_WORKDIR
on the submission host when a job finishes. When qsub is run, it sets $PBS_O_WORKDIR to the current working
directory where the qsub command is executed. This means that if you want your job’s stdout and stderr files to
be delivered to your submission directory, you do not need to do anything.

The following options to the qsub command control where stdout and stderr are created and whether and where
they are copied when the job is finished:

sandbox

By default, PBS runs the job script in the owner’s home directory. If sandbox is set to PRIVATE, PBS creates
a job-specific execution directory, and runs the job script there. See section 3.2.2.1, “Setting the Job Staging
and Execution Directory”, on page 34.

k

Specifies whether and which of stdout and stderr is retained in the job’s execution directory. When set,
this option overrides o and e. See section 3.3.5, “Keeping Output and Error Files on Execution Host”, on page
46.

You can also specify that output and/or error files are written directly to the final destination. See section 3.3.6,
“Writing Files Directly to Final Destination”, on page 47.
PBS Professional 19.2.3 User’s Guide UG-41

Chapter 3 Job Input & Output Files
o

Specifies destination for stdout. Overridden by k when k is set. See section 3.3.2, “Paths for Output and
Error Files”, on page 44.

e
Specifies destination for stderr. Overridden by k when k is set. See section 3.3.2, “Paths for Output and
Error Files”, on page 44.

R

Specifies whether standard output and/or standard error are deleted upon job completion. See section 3.3.3,
“Avoiding Creation of stdout and/or stderr”, on page 45.
UG-42 PBS Professional 19.2.3 User’s Guide

Job Input & Output Files Chapter 3
The following table shows how these options control creation and copying of stdout and stderr:

• You can specify a path for stdout and/or stderr: see section 3.3.2, “Paths for Output and Error Files”, on page
44.

• You can merge stdout and stderr: see section 3.3.4, “Merging Output and Error Files”, on page 45.

• You can prevent creation of stdout and/or stderr: see section 3.3.3, “Avoiding Creation of stdout and/or stderr”,
on page 45.

• You can choose whether to retain stdout and/or stderr on the execution host: see section 3.3.5, “Keeping Output
and Error Files on Execution Host”, on page 46.

• You can specify that output and/or error files are written directly to the final destination. See section 3.3.6, “Writing
Files Directly to Final Destination”, on page 47.

• You can specify that output and/or error files are deleted when the job finishes. See section 3.3.3, “Avoiding Cre-
ation of stdout and/or stderr”, on page 45.

Table 3-4: How k, sandbox, o, and e Options to qsub Affect stdout and stderr

sandbox -k -o, -e -R -k d
Where stdout,
stderr are

created

Where stdout,
stderr are copied

HOME or
unset

unset unset unset unset PBS_HOME/spool PBS_O_WORKDIR,
which is job submission
directory

HOME or
unset

unset <path> unset unset PBS_HOME/spool Destination specified in -o
<path> and/or -e
<path>

HOME or
unset

<path> unset unset unset Job submitter’s home
directory

Not copied; left in submit-
ter’s home directory

HOME or
unset

<path> <path> unset unset Job submitter’s home
directory

Not copied; left in submit-
ter’s home directory

PRIVATE unset unset unset unset Job-specific execu-
tion directory created
by PBS

PBS_O_WORKDIR,
which is job submission
directory

PRIVATE unset <path> unset unset Job-specific execu-
tion directory created
by PBS

Destination specified in -o
<path> and/or -e
<path>

PRIVATE <path> unset unset unset Job-specific execu-
tion directory created
by PBS

Not copied; left in job-spe-
cific execution directory

PRIVATE <path> <path> unset unset Job-specific execu-
tion directory created
by PBS

Not copied; left in job-spe-
cific execution directory

any any any -R e/o unset Deleted Not copied

any any any -R e/o -k d Deleted Not copied

any any any unset -k d Final destination, if
MoM can reach it

Not copied
PBS Professional 19.2.3 User’s Guide UG-43

Chapter 3 Job Input & Output Files
3.3.2 Paths for Output and Error Files

3.3.2.1 Default Paths for Output and Error Files

By default, PBS names the output and error files for your job using the job name and the job’s sequence number. The
output file name is specified in the Output_Path job attribute, and the error file name is specified in the Error_Path job
attribute.

The default output filename has this format:

<job name>.o<sequence number>

The default error filename has this format:

<job name>.e<sequence number>

The job name, if not specified, defaults to the script name. For example, if the job ID is 1234.exampleserver and
the script name is “myscript”, the error file is named myscript.e1234. If you specify a name for your job, the
script name is replaced with the job name. For example, if you name your job “fixgamma”, the output file is named
fixgamma.o1234.

For details on naming your job, see section 2.5.2, “Specifying Job Name”, on page 28.

3.3.2.2 Specifying Paths

You can specify the path and name for the output and error files for each job, by setting the value for the Output_Path
and Error_Path job attributes. You can set these attributes using the following methods:

• Use the -o <output path> and -e <error path> options to qsub

• Use #PBS Output_Path=<path> and #PBS Error_Path=<path> directives in the job script

The path argument has the following form:

[<hostname>:]<pathname>

where hostname is the name of a host and pathname is the path name on that host.

You can specify relative or absolute paths. If you specify only a file name, it is assumed to be relative to your home direc-
tory. Do not use variables in the path.

The following examples show how you can specify paths:

#PBS -o /u/user1/myOutputFile

#PBS -e /u/user1/myErrorFile

qsub -o myOutputFile my_job

qsub -o /u/user1/myOutputFile my_job

qsub -o myWorkstation:/u/user1/myOutputFile my_job

qsub -e myErrorFile my_job

qsub -e /u/user1/myErrorFile my_job

qsub -e myWorkstation:/u/user1/myErrorFile my_job
UG-44 PBS Professional 19.2.3 User’s Guide

Job Input & Output Files Chapter 3
3.3.2.3 Specifying Paths from Windows Hosts

3.3.2.3.i Using Special Characters in Paths

If you submit your job from a Windows host, you may end up using special characters such as spaces, backslashes (“\”),
and colons (“:”) for specifying pathnames, and you may need drive letter specifications. The following examples are
allowed:

qsub -o \temp\my_out job.scr

qsub -e "myhost:e:\Documents and Settings\user\Desktop\output"

The error output of the example job is to be copied onto the e: drive on myhost using the path "\Documents and
Settings\user\Desktop\output".

3.3.2.3.ii Using UNC Paths

If you use a UNC path for output or error files, the hostname is optional. If you use a non-UNC path, the hostname is
required.

3.3.2.4 Caveats for Paths

Enclose arguments to qsub in quotes if the arguments contain spaces.

3.3.3 Avoiding Creation of stdout and/or stderr

For each job, PBS always creates the job’s output and error files. The location where files are created is listed in Table 3-
4, “How k, sandbox, o, and e Options to qsub Affect stdout and stderr,” on page 43.

If you do not want stdout and/or stderr, you can do either of the following:

• Specify that PBS deletes the file(s) when the job finishes, using the -R option to qsub or qalter. The -R option
takes o, e, eo, or oe as sub-options. For example, to have PBS delete the error file:
qsub -R e job.sh

• Redirect them to /dev/null within the job script. For example, to redirect stdout and stderr to /dev/null:
exec >&/dev/null 1>&2

• Standard output and standard error are normally written to a location such as /var/spool, then copied to their final
location. To avoid creating these files at all, and to avoid copying them, use direct write to send them to /dev/null:
qsub -koed -o /dev/null -e /dev/null

Your administrator must also set up the MoM’s configuration file to support this.

3.3.4 Merging Output and Error Files

By default, PBS creates separate standard output and standard error files for each job. You can specify that stdout and
stderr are to be joined by setting the job’s Join_Path attribute. The default for the attribute is n, meaning that no join-
ing takes place. You can set the attribute using the following methods:

• Use qsub -j <joining option>

• Use #PBS Join_Path=<joining option>

You can specify one of the following joining options:

oe

Standard output and standard error are merged, intermixed, into a single stream, which becomes standard out-
put.
PBS Professional 19.2.3 User’s Guide UG-45

Chapter 3 Job Input & Output Files
eo

Standard output and standard error are merged, intermixed, into a single stream, which becomes standard error.

n

Standard output and standard error are not merged.

For example, to merge standard output and standard error for my_job into standard output:

qsub -j oe my_job

#PBS -j oe

3.3.5 Keeping Output and Error Files on Execution Host

By default, PBS copies stdout and stderr to the job’s submission directory. You can specify that PBS keeps std-
out, stderr, or both in the job’s execution directory on the execution host. This behavior is controlled by the job’s
Keep_Files attribute. You can set this attribute to one of the following values:

e

PBS keeps stderr in the job’s staging and execution directory on the primary execution host.

o

PBS keeps stdout in the job’s staging and execution directory on the primary execution host.

eo, oe

PBS keeps both standard output and standard error on the primary execution host, in the job's staging and execu-
tion directory.

n

PBS does not keep either file on the execution host.

The default value for Keep_Files is “n”.

You can set the value of the Keep_Files job attribute using the following methods:

• Use qsub -k <keep option>

• Use #PBS Keep_Files=<keep option>

For example, you can use either of the following to keep both standard output and standard error on the execution host:

qsub -k oe my_job

#PBS -k oe

Note that there is also a d sub-option to the -k option, which overrides the o and e sub-options. See section 3.3.6, “Writ-
ing Files Directly to Final Destination”, on page 47.

3.3.5.1 Caveats for Keeping Files on Execution Host

• When a job finishes, its job-specific execution directory, and all files in that directory, are deleted. If you specified
that stdout and/or stderr should be kept on the execution host, any files you specified are deleted as well.

• The qsub -k option overrides the -o and -e options. For example, if you specify qsub -k o -o <path>,
stdout is kept on the execution host, and is not copied to the path you specified.
UG-46 PBS Professional 19.2.3 User’s Guide

Job Input & Output Files Chapter 3
3.3.6 Writing Files Directly to Final Destination

If the MoM on the primary execution host can reach the final destination, she can write the job’s standard output and
standard error files to that destination. To be reachable, the final destination host and path must either be on the execu-
tion host, or be mapped from the primary execution host via the $usecp directive in the MoM configuration file. To
specify that standard output and/or standard error should be written directly to their final destinations, use the d sub-
option to the -k option to qsub or qalter.

For example, to directly write both output and error to their final destinations:

qsub -koed job.sh

To directly write output to its final destination, and let error go through normal spooling and staging:

qsub -kod job.sh

3.3.7 Changing Linux Job umask

On Linux, whenever your job copies or creates a file or directory on the execution host, MoM uses umask to determine
the permissions for the file or directory. If you do not specify a value for umask, MoM uses the system default. You can
specify a value using the following methods:

• Use qsub -W umask=<value>

• Use #PBS umask=<value>

This applies when staging or copying files or directories to the execution host, or writing stdout or stderr on the
execution host.

In the following example, we set umask to 022, to have files created with write permission for owner only. The desired
permissions are -rw-r--r--.

qsub -W umask=022 my_job

#PBS -W umask=022

3.3.7.1 Caveats

This feature does not apply to Windows.

3.3.8 Troubleshooting File Delivery

File delivery is handled by MoM on the execution host. For a description of how file delivery works, see "Setting File
Transfer Mechanism" on page 551 in the PBS Professional Administrator’s Guide.

For troubleshooting file delivery, see "Troubleshooting File Transfer" on page 557 in the PBS Professional Administra-
tor’s Guide.
PBS Professional 19.2.3 User’s Guide UG-47

Chapter 3 Job Input & Output Files
3.3.8.1 Non-delivery of Output

If the output of a job cannot be delivered to you, it is saved in a special directory named PBS_HOME/undelivered and
mail is sent to you. The typical causes of non-delivery are:

1. The destination host is not trusted and you do not have a .rhosts file.

2. An improper path was specified.

3. A directory in the specified destination path is not writable.

4. Your .cshrc on the destination host generates output when executed.

5. The path specified by PBS_SCP in pbs.conf is incorrect.

6. The PBS_HOME/spool directory on the execution host does not have the correct permissions. This directory must
have mode 1777 drwxrwxrwxt (on Linux) or “Full Control” for “Everyone” (on Windows).

3.3.9 Caveats for Output and Error Files

3.3.9.1 Retaining Files on Execution Host

When PBS creates a job-specific staging and execution directory and you use the -k option to qsub or you specify o and/
or e in the Keep_Files attribute, the files you requested kept on the execution host are deleted when the job-specific
staging and execution directory is deleted at the end of the job.

3.3.9.2 Standard Output and Error Appended When Job is Rerun

If your job runs and writes to stdout or stderr, and then is rerun, meaning that another job with the same name is run,
PBS appends the stdout of the second run to that of the first, and appends the stderr of the second run to that of the
first.

3.3.9.3 Windows Mapped Drives and PBS

In Windows, when you map a drive, it is mapped locally to your session. The mapped drive cannot be seen by other pro-
cesses outside of your session. A drive mapped on one session cannot be un-mapped in another session even if the user
is the same. This has implications for running jobs under PBS. Specifically if you map a drive, chdir to it, and submit a
job from that location, the vnode that executes the job may not be able to deliver the files back to the same location from
which you issued qsub. The workaround is to tell PBS to deliver the files to a local, non-mapped, directory. Use the “-
o” or “-e” options to qsub to specify the directory location for the job output and error files. For details see section
3.3.2, “Paths for Output and Error Files”, on page 44.

3.3.9.4 Harmless csh Error Message

If your login shell is csh the following message may appear in the standard output of a job:

Warning: no access to tty, thus no job control in this shell

This message is produced by many csh versions when the shell determines that its input is not a terminal. Short of mod-
ifying csh, there is no way to eliminate the message. Fortunately, it is just an informative message and has no effect on
the job.

3.3.9.5 Interactive Jobs and File I/O

When an interactive job finishes, stdout and/or stderr may not have been copied back yet.
UG-48 PBS Professional 19.2.3 User’s Guide

Job Input & Output Files Chapter 3
3.3.9.6 Write Permissions Required

• You must have write permission for any directory where you will copy stdout or stderr.

• Root must be able to write in PBS_HOME/spool.
PBS Professional 19.2.3 User’s Guide UG-49

Chapter 3 Job Input & Output Files
UG-50 PBS Professional 19.2.3 User’s Guide

4

Allocating Resources & Placing

Jobs

4.1 What is a Vnode?

A virtual node, or vnode, is an abstract object representing a set of resources which form a usable part of a machine. This
could be an entire host, or a nodeboard or a blade. A single host can be made up of multiple vnodes.

A host is any computer. Execution hosts used to be called nodes, and are still often called nodes outside of the PBS doc-
umentation. PBS views hosts as being composed of one or more vnodes.

PBS manages and schedules each vnode independently. Jobs run on one or more vnodes. Each vnode has its own set of
attributes; see “Vnode Attributes” on page 311 of the PBS Professional Reference Guide.

4.1.1 Deprecated Vnode Types

All vnodes are treated alike, and are treated the same as what were once called “time-shared nodes”. The types “time-
shared” and “cluster” are deprecated. The :ts suffix is deprecated. It is silently ignored, and not preserved during
rewrite.

The vnode attribute ntype was only used to distinguish between PBS and Globus vnodes. Globus can still send jobs to
PBS, but PBS no longer supports sending jobs to Globus. The ntype attribute is read-only.

4.2 PBS Resources

4.2.1 Introduction to PBS Resources

In this section, "Introduction to PBS Resources", we will briefly cover the basics of PBS resources. For a thorough dis-
cussion, see "Using PBS Resources" on page 227 in the PBS Professional Administrator’s Guide, especially sections 5.4
and 5.5. For a complete description of each PBS resource, see Chapter 5, "List of Built-in Resources", on page 255.

PBS resources represent things such as CPUs, memory, application licenses, switches, scratch space, and time. They can
also represent whether or not something is true, for example, whether a machine is dedicated to a particular project.

PBS provides a set of built-in resources, and allows the administrator to define additional custom resources. Custom
resources are used for application licenses, scratch space, etc., and are defined by the administrator. Custom resources
are used the same way built-in resources are used. PBS supplies the following types of resources:

Boolean

duration

float

long

size
PBS Professional 19.2.3 User’s Guide UG-51

Chapter 4 Allocating Resources & Placing Jobs
string

string_array

See “List of Formats” on page 343 of the PBS Professional Reference Guide for a description of each resource type.

See “Resources Built Into PBS” on page 258 of the PBS Professional Reference Guide for a listing of built-in resources.

For some systems, PBS creates specific custom resources.

The administrator can specify which resources are available at the server, each queue, and each vnode. Resources
defined at the queue or server level apply to an entire job. Resources defined at the vnode level apply only to the part of
the job running on that vnode.

Jobs can request resources. The scheduler matches requested resources with available resources, according to rules
defined by the administrator. PBS always places jobs where it finds the resources requested by the job. PBS will not
place a job where that job would use more resources than PBS thinks are available. For example, if you have two jobs,
each requesting 1 CPU, and you have one vnode with 1 CPU, PBS will run only one job at a time on the vnode.

PBS can enforce limits on resource usage by jobs; see section 4.5, “Limits on Resource Usage”, on page 62.

4.2.2 Glossary

Chunk

A set of resources allocated as a unit to a job. Specified inside a selection directive. All parts of a chunk come
from the same host. In a typical MPI (Message-Passing Interface) job, there is one chunk per MPI process.

Chunk-level resource, host-level resource

A resource that is available at the host level, for example, CPUs or memory. Chunk resources are requested
inside of a selection statement. The resources of a chunk are to be applied to the portion of the job running in
that chunk.

Chunk resources are requested inside a select statement.

Job-wide resource, server resource, queue resource

A job-wide resource, also called a server-level or queue-level resource, is a resource that is available to the
entire job at the server or queue.

A job-wide resource is available to be consumed or matched at the server or queue if you set the server or queue
resources_available.<resource name> attribute to the available or matching value. For example, you can
define a custom resource called FloatingLicenses and set the server’s resources_available.FloatingLi-

censes attribute to the number of available floating licenses.

Examples of job-wide resources are shared scratch space, licenses, or walltime.

A job can request a job-wide resource for the entire job, but not for individual chunks.

4.3 Requesting Resources

Your job can request resources that apply to the entire job, or resources that apply to job chunks. For example, if your
entire job needs an application license, your job can request one job-wide license. However, if one job process needs two
CPUs and another needs 8 CPUs, your job can request two chunks, one with two CPUs and one with eight CPUs. Your
job cannot request the same resource in a job-wide request and a chunk-level request.

PBS supplies resources such as walltime that can be used only as job-wide resources, and other resources, such as ncpus
and mem, that can be used only as chunk resources. A resource is either job-wide or chunk-level, but not both. The
description of each resource tells you which way to use the resource; see “List of Built-in Resources” on page 255 of the
PBS Professional Reference Guide.
UG-52 PBS Professional 19.2.3 User’s Guide

Allocating Resources & Placing Jobs Chapter 4
We will cover the details of requesting resources in section 4.3.2, “Requesting Job-wide Resources”, on page 53 and sec-
tion 4.3.3, “Requesting Resources in Chunks”, on page 54.

4.3.1 Quick Summary of Requesting Resources

Job-wide resources are requested in <resource neme>=<value> pairs. You can request job-wide resources using any of
the following:

• The qsub -l <resource name>=<value> option

You can request multiple resources, using either format:

-l <resource>=<value>,<resource>=<value>

-l <resource>=<value> -l <resource>=<value>

• One or more #PBS -l <resource name>=<value> directives

Chunk resources are requested in chunk specifications in a select statement. You can request chunk resources using any
of the following:

• The qsub -l select=[N:][<chunk specification>][+[N:]<chunk specification>] option

• A #PBS -l select=[N:][<chunk specification>][+[N:]<chunk specification>] directive

Format for requesting both job-wide and chunk resources:

qsub ... (non-resource portion of job)
-l <resource>=<value> (this is the job-wide request)
-l select=<chunk>[+<chunk>] (this is the selection statement)

PBS supplies several commands that you can use to request resources or alter resource requests:

• The qsub command (both via command-line and in PBS directives)

• The pbs_rsub command (via command-line only)

• The qalter command (via command-line only)

4.3.2 Requesting Job-wide Resources

Your job can request resources that apply to the entire job in job-wide resource requests. A job-wide resource is
designed to be used by the entire job, and is available at the server or a queue, but not at the host level. Job-wide
resources are used for requesting floating licenses or other resources not tied to specific vnodes, such as cput and wall-

time.

Job-wide resources are requested outside of a selection statement, in this form:

-l <resource name>=<value>[,<resource name>=<value> ...]

A resource request “outside of a selection statement” means that the resource request comes after “-l”, but not after “-
lselect=”. In other words, you cannot request a job-wide resource in chunks.

For example, to request one hour of walltime for a job:

-l walltime=1:00:00

You can request job-wide resources using any of the following:

• The qsub -l <resource name>=<value> option

You can request multiple resources, using either format:

-l <resource>=<value>,<resource>=<value>

-l <resource>=<value> -l <resource>=<value>

• One or more #PBS -l <resource name>=<value> directives
PBS Professional 19.2.3 User’s Guide UG-53

Chapter 4 Allocating Resources & Placing Jobs
4.3.3 Requesting Resources in Chunks

A chunk specifies the value of each resource in a set of resources which are to be allocated as a unit to a job. It is the
smallest set of resources to be allocated to a job. All of a chunk is taken from a single host. One chunk may be broken
across vnodes, but all participating vnodes must be from the same host.

Your job can request chunk resources, which are resources that apply to the host-level parts of the job. Host-level
resources can only be requested as part of a chunk. Server or queue resources cannot be requested as part of a chunk. A
chunk resource is used by the part of the job running on that chunk, and is available at the host level. Chunks are used for
requesting host-related resources such as CPUs, memory, and architecture.

Chunk resources are requested inside a select statement. A select statement has this form:

-l select=[N:]<chunk>[+[N:]<chunk> ...]

Now, we’ll explain the details. A single chunk is requested using this form:

-l select=<resource name>=<value>[:<resource name>=<value>...]

For example, one chunk might have 2 CPUs and 4GB of memory:

-l select=ncpus=2:mem=4gb

To request multiples of a chunk, prefix the chunk specification by the number of chunks:

-l select=[<number of chunks>]<chunk specification>

For example, to request six of the previous chunk:

-l select=6:ncpus=2:mem=4gb

If you don’t specify N, the number of chunks, it is taken to be 1.

To request different chunks, concatenate the chunks using the plus sign (“+”):

-l select=[<number of chunks>]<chunk specification>+[<number of chunks>]<chunk specification>

For example, to request two sets of chunks where one set of 6 chunks has 2 CPUs per chunk, and one set of 3 chunks has
8 CPUs per chunk, and both sets have 4GB of memory per chunk:

-l select=6:ncpus=2:mem=4gb+3:ncpus=8:mem=4GB

No spaces are allowed between chunks.

You must specify all your chunks in a single select statement.

You can request chunk resources using any of the following:

• The qsub -l select=[N:][<chunk specification>][+[N:]<chunk specification>] option

• A #PBS -l select=[N:][<chunk specification>][+[N:]<chunk specification>] directive

4.3.4 Requesting Boolean Resources

A resource request can specify whether a Boolean resource should be True or False.

Example 4-1: Some vnodes have green=True and some have red=True, and you want to request two vnodes, each with
one CPU, all green and no red:

-l select=2:green=true:red=false:ncpus=1

Example 4-2: This job script snippet has a job-wide request for walltime and a chunk request for CPUs and memory
where the Boolean resource HasMyApp is True:

#PBS -l walltime=1:00:00

#PBS -l select=ncpus=4:mem=400mb:HasMyApp=true
UG-54 PBS Professional 19.2.3 User’s Guide

Allocating Resources & Placing Jobs Chapter 4
Keep in mind the difference between requesting a vnode-level boolean and a job-wide boolean:

qsub -l select=1:green=True

requests a vnode with green set to True. However,

qsub -l green=True

requests green set to True on the server and/or queue.

4.3.5 Requesting Application Licenses

Application licenses are managed as resources defined by your PBS administrator. PBS doesn't actually check out the
licenses; the application being run inside the job's session does that.

4.3.5.1 Requesting Floating Application Licenses

A site-wide floating license is typically configured as a server-level, job-wide resource.

To request a job-wide application license called AppF, use:

qsub -l AppF=<number of licenses> <other qsub arguments>

If only certain hosts can run the application, they will typically have a host-level Boolean resource set to True.

The job-wide resource AppF is a numerical resource indicating the number of licenses available at the site. The host-
level Boolean resource haveAppF indicates whether a given host can run the application. To request the application
license and the vnodes on which to run the application:

qsub -l AppF=<number of licenses> <other qsub arguments>

 -l select=haveAppF=True

PBS queries the license server to find out how many floating licenses are available at the beginning of each scheduling
cycle. PBS doesn't actually check out the licenses, the application being run inside the job's session does that.

4.3.5.2 Requesting Node-locked Application Licenses

Node-locked application licenses are available at the vnode(s) that are licensed for the application. These are host-level
(chunk) resources that are requested inside of a select statement.

4.3.5.2.i Requesting Per-host Node-locked Application Licenses

Per-host node-locked application licenses are typically configured as a Boolean resource that indicates whether or not the
required license is available at that host.

When requesting Boolean-valued per-host node-locked licenses, request one per host. Format:

qsub -l select=<Boolean resource name>=true:<rest of chunk specification>

Example 4-3: The Boolean resource runsAppA specifies whether this vnode has the necessary license. To request a host
with a per-host node-locked license for AppA in one chunk:

qsub -l select=1:runsAppA=1 <job script>

4.3.5.2.ii Requesting Per-use Node-locked Application Licenses

Per-use node-locked application licenses are typically configured as a consumable numeric resource so that the host(s)
that run the application have the number of licenses that can be used at one time.
PBS Professional 19.2.3 User’s Guide UG-55

Chapter 4 Allocating Resources & Placing Jobs
When requesting numerical per-use node-locked licenses, request the required number of licenses for each host:

qsub -l select=<consumable resource name>=<required amount>:<rest of chunk specification>

Example 4-4: The consumable resource named AppB indicates the number of available per-use application licenses on a
host. To request a host with a per-use node-locked license for AppB, where you’ll run one instance of AppB on two
CPUs in one chunk:

qsub -l select=1:ncpus=2:AppB=1

4.3.5.2.iii Requesting Per-CPU Node-locked Application Licenses

Per-CPU node-locked licenses are typically arranged so that the host has one license for each licensed CPU. The PBS
administrator configures a consumable numerical resource indicating the number of available licenses.

You must request one license for each CPU. When requesting numerical per-use node-locked licenses, request the
required number of licenses for each host:

qsub -l select=<per-CPU resource name>=<required amount>:<rest of chunk specification>

Example 4-5: The numerical consumable resource named AppC indicates the number of available per-CPU licenses. To
request a host with two per-CPU node-locked licenses for AppC, where you’ll run a job using two CPUs in one
chunk:

qsub -l select=1:ncpus=2:AppC=2

4.3.6 Requesting Scratch Space

Scratch space on a machine is configured as a host-level dynamic resource. Ask your administrator for the name of the
scratch space resource.

When requesting scratch space, include the resource in your chunk request:

-l select=<scratch resource name>=<amount of scratch needed>:<rest of chunk specification>

Example 4-6: Your administrator has named the scratch resource “dynscratch”. To request 10MB of scratch space in
one chunk:

-l select=1:ncpus=N:dynscratch=10MB

4.3.7 Requesting GPUs

Your PBS job can request GPUs. How you request GPUs depends on whether PBS uses cgroups; check with your
administrator.

On Linux only, PBS can be configured to use cgroups to fence GPUs off, so that when your job requests GPUs it auto-
matically gets exclusive use of its GPUs. You don’t have to request exclusivity. We recommend this method.

On Windows or Linux, when PBS is not using cgroups to manage GPUs, your administrator can configure PBS to sup-
port any of the following:

• (“Basic GPU scheduling”) Job uses non-specific GPUs and exclusive use of a node

• (“Advanced GPU scheduling”) Job uses non-specific GPUs and shared use of a node

• (“Advanced GPU scheduling”) Job uses specific GPUs and either shared or exclusive use of a node

4.3.7.1 Binding to GPUs

PBS Professional allocates GPUs, but does not bind jobs to any particular GPU; the application itself, or the CUDA
library, is responsible for the actual binding.
UG-56 PBS Professional 19.2.3 User’s Guide

Allocating Resources & Placing Jobs Chapter 4
4.3.7.2 Requesting Non-specific GPUs and Exclusive Use of Node

When your site uses “basic GPU scheduling”, if your job needs GPUs, but does not require specific GPUs, and can
request exclusive use of GPU nodes, you can request GPUs the same way you request CPUs.

Your administrator can set up a resource to represent the GPUs on a node. We recommend that the GPU resource is
called ngpus.

When requesting GPUs in this manner, your job should request exclusive use of the node to prevent other jobs being
scheduled on its GPUs.

qsub -l select=ngpus=<value>:<rest of chunk specification> -lplace=excl

Example 4-7: To submit the job named “my_gpu_job”, requesting one node with two GPUs and one CPU, and exclu-
sive use of the node:

qsub -lselect=1:ncpus=1:ngpus=2 -lplace=excl my_gpu_job

It is up to the application or CUDA to bind the GPUs to the application processes.

4.3.7.3 Requesting Non-specific GPUs and Shared Use of Node

When your site uses “advanced GPU scheduling”, your administrator can configure PBS to allow your job to use non-
specific GPUs on a node while sharing GPU nodes. In this case, your administrator puts each GPU in its own vnode.

Your administrator can configure a resource to represent GPUs. We recommend that the GPU resource is called ngpus.

Your administrator can configure each GPU vnode so it has a resource containing the device number of the GPU. We
recommend that this resource is called gpu_id.

Example 4-8: To submit the job named “my_gpu_job”, requesting two GPUs and one CPU, and shared use of the node:

qsub -lselect=1:ncpus=1:ngpus=2 -lplace=shared my_gpu_job

When a job is submitted requesting any GPU, the PBS scheduler looks for a vnode with an available GPU and assigns
that vnode to the job. Since there is a one-to-one correspondence between GPUs and vnodes, the job can determine the
gpu_id of that vnode. Finally, the application can use the appropriate CUDA call to bind the process to the allocated
GPU.

4.3.7.4 Requesting Specific GPUs

When your site uses “advanced GPU scheduling”, your job can request one or more specific GPUs. This allows you to
run applications on the GPUs for which the applications are written.

Your administrator can set up a resource to allow jobs to request specific GPUs. We recommend that the GPU resource
is called gpu_id.

When you request specific GPUs, specify the GPU that you want for each chunk:

qsub -l select=gpu_id=<GPU ID>:<rest of chunk specification>

Example 4-9: To request 4 vnodes, each with GPU with ID 0:

qsub -lselect=4:ncpus=1:ngpus=1:gpu_id=gpu0 my_gpu_job

When a job is submitted requesting specific GPUs, the PBS scheduler assigns the vnode with the resource containing that
gpu_id to the job. The application can use the appropriate CUDA call to bind the process to the allocated GPU.

4.3.7.5 Viewing GPU Information for Nodes

You can find the number of GPUs available and assigned on execution hosts via the pbsnodes command. See section
4.6, “Viewing Resources”, on page 64.
PBS Professional 19.2.3 User’s Guide UG-57

Chapter 4 Allocating Resources & Placing Jobs
4.3.8 Caveats and Restrictions on Requesting Resources

4.3.8.1 Caveats and Restrictions for Specifying Resource Values

• Resource values which contain commas, quotes, plus signs, equal signs, colons, or parentheses must be quoted to
PBS. The string must be enclosed in quotes so that the command (e.g. qsub, qalter) will parse it correctly.

• When specifying resources via the command line, any quoted strings must be escaped or enclosed in another set of
quotes. This second set of quotes must be different from the first set, meaning that double quotes must be enclosed
in single quotes, and vice versa.

• If a string resource value contains spaces or shell metacharacters, enclose the string in quotes, or otherwise escape
the space and metacharacters. Be sure to use the correct quotes for your shell and the behavior you want.

4.3.8.2 Warning About NOT Requesting walltime

If your job does not request a walltime, and there is no default for walltime, your job is treated as if it had requested a
very, very long walltime. Translation: the scheduler will have a hard time finding a time slot for your job. Remember,
the administrator may schedule dedicated time for the entire PBS complex once a year, for upgrading, etc. In this case,
your job will never run. We recommend requesting a reasonable walltime for your job.

4.3.8.3 Caveats for Jobs Requesting Undefined Resources

If you submit a job that requests a job-wide or host-level resource that is undefined, the job is not rejected at submission;
instead, it is aborted upon being enqueued in an execution queue, if the resources are still undefined. This preserves
backward compatibility.

4.3.8.4 Matching Resource Requests with Unset Resources

When job resource requests are being matched with available resources, a numerical resource that is unset on a host is
treated as if it were zero, and an unset string cannot satisfy a request. An unset Boolean resource is treated as if it were
set to “False”. An unset resource at the server or queue is treated as if it were infinite.

4.3.8.5 Caveat for Invisible or Unrequestable Resources

Your administrator may define custom resources which restricted, so that they are invisible, or are visible but unrequest-
able. Custom resources which were created to be invisible or unrequestable cannot be requested or altered. The follow-
ing is a list of the commands normally used to view or request resources or modify resource requests, and their
limitations for restricted resources:

pbsnodes

Job submitters cannot view restricted host-level custom resources.

pbs_rstat

Job submitters cannot view restricted reservation resources.

pbs_rsub

Job submitters cannot request restricted custom resources for reservations.

qalter

Job submitters cannot alter a restricted resource.

qmgr

Job submitters cannot print or list a restricted resource.
UG-58 PBS Professional 19.2.3 User’s Guide

Allocating Resources & Placing Jobs Chapter 4
qselect

Job submitters cannot specify restricted resources via -l Resource_List.

qsub

Job submitters cannot request a restricted resource.

qstat

Job submitters cannot view a restricted resource.

4.3.8.6 Warning About Requesting Tiny Amounts of Memory

The smallest unit of memory you can request is 1KB. If you request 400 bytes, you get 1KB. If you request 1400 bytes,
you get 2KB.

4.3.8.7 Maximum Length of Job Submission Command Line

The maximum length of a command line in PBS is 4095 characters. When you submit a job using the command line,
your select and place statements, and the rest of your command line, must fit within 4095 characters.

4.3.8.8 Only One select Statement Per Job

You can include at most one select statement per job submission.

4.3.8.9 The software Resource is Job-wide

The built-in resource "software" is not a vnode-level resource. See “Resources Built Into PBS” on page 258 of the PBS
Professional Reference Guide.

4.3.8.10 Do Not Mix Old and New Syntax

Do not mix old and new syntax when requesting resources. See section 4.8, “Backward Compatibility”, on page 71 for a
description of old syntax.

4.4 How Resources are Allocated to Jobs

Resources are allocated to your job when the job explicitly requests them, and when PBS applies defaults.

Jobs explicitly request resources either at the vnode level in chunks defined in a selection statement, or in job-wide
resource requests. We will cover requesting resources in section 4.3.3, “Requesting Resources in Chunks”, on page 54
and section 4.3.2, “Requesting Job-wide Resources”, on page 53.

The administrator can set default resources at the server and at queues, so that a job that does not request a resource at
submission time ends up being allocated the default value for that resource. We will cover default resources in section
4.4.1, “Applying Default Resources”, on page 59.

The administrator can also specify default arguments for qsub so that jobs automatically request certain resources.
Resource values explicitly requested by your job override any qsub defaults. See “qsub” on page 207 of the PBS Pro-
fessional Reference Guide.

4.4.1 Applying Default Resources

PBS applies resource defaults only where the job has not explicitly requested a value for a resource.
PBS Professional 19.2.3 User’s Guide UG-59

Chapter 4 Allocating Resources & Placing Jobs
Job-wide and per-chunk resources are applied, with the following order of precedence, via the following:

1. Resources that are explicitly requested via -l <resource>=<value> and -l select=<chunk>

2. Default qsub arguments

3. The queue’s default_chunk.<resource>

4. The server’s default_chunk.<resource>

5. The queue’s resources_default.<resource>

6. The server’s resources_default.<resource>

7. The queue’s resources_max.<resource>

8. The server’s resources_max.<resource>

4.4.1.1 Applying Job-wide Default Resources

The explicit job-wide resource request is checked first against default qsub arguments, then against queue resource
defaults, then against server resource defaults. Any default job-wide resources not already in the job’s resource request
are added. PBS applies job-wide default resources defined in the following places, in this order:

• Via qsub: The server’s default_qsub_arguments attribute can include any requestable job-wide resources.

• Via the queue: Each queue’s resources_default attribute defines each queue-level job-wide resource default in
resources_default.<resource>.

• Via the server: The server’s resources_default attribute defines each server-level job-wide resource default in
resources_default.<resource>.

4.4.1.2 Applying Per-chunk Default Resources

For each chunk in the job's selection statement, first qsub defaults are applied, then queue chunk defaults are applied,
then server chunk defaults are applied. If the chunk request does not include a resource listed in the defaults, the default
is added. PBS applies default chunk resources in the following order:

• Via qsub: The server’s default_qsub_arguments attribute can include any requestable chunk resources.

• Via the queue: Each queue’s default_chunk attribute defines each queue-level chunk resource default in
default_chunk.<resource>.

• Via the server: The server’s default_chunk attribute defines each server-level chunk resource default in
default_chunk.<resource>.

Example 4-10: Applying chunk defaults: if the queue in which the job is enqueued has the following defaults defined:

default_chunk.ncpus=1

default_chunk.mem=2gb

A job submitted with this selection statement:

select=2:ncpus=4+1:mem=9gb

The job has this specification after the default_chunk elements are applied:

select=2:ncpus=4:mem=2gb+1:ncpus=1:mem=9gb.

In this example, mem=2gb and ncpus=1 are inherited from default_chunk.
UG-60 PBS Professional 19.2.3 User’s Guide

Allocating Resources & Placing Jobs Chapter 4
4.4.1.3 Caveat for Moving Jobs From One Queue to Another

If the job is moved from the current queue to a new queue, any default resources in the job's resource list that were con-
tributed by the current queue are removed. This includes a select specification and place directive generated by the rules
for conversion from the old syntax. If a job's resource is unset (undefined) and there exists a default value at the new
queue or server, that default value is applied to the job's resource list. If either select or place is missing from the job's
new resource list, it will be automatically generated, using any newly inherited default values.

Given the following set of queue and server default values:

Server

resources_default.ncpus=1

Queue QA

resources_default.ncpus=2

default_chunk.mem=2gb

Queue QB

default_chunk.mem=1gb

no default for ncpus

The following examples illustrate the equivalent select specification for jobs submitted into queue QA and then moved to
(or submitted directly to) queue QB:

qsub -l ncpus=1 -lmem=4gb

In QA: select=1:ncpus=1:mem=4gb

No defaults need be applied

In QB: select=1:ncpus=1:mem=4gb

No defaults need be applied

qsub -l ncpus=1

In QA: select=1:ncpus=1:mem=2gb

Picks up 2gb from queue default chunk and 1 ncpus from qsub

In QB: select=1:ncpus=1:mem=1gb

Picks up 1gb from queue default chunk and 1 ncpus from qsub

qsub -lmem=4gb

In QA: select=1:ncpus=2:mem=4gb

Picks up 2 ncpus from queue level job-wide resource default and 4gb mem from qsub

In QB: select=1:ncpus=1:mem=4gb

Picks up 1 ncpus from server level job-wide default and 4gb mem from qsub

qsub -lnodes=4

In QA: select=4:ncpus=1:mem=2gb

Picks up a queue level default memory chunk of 2gb. (This is not 4:ncpus=2 because in prior versions,
"nodes=x" implied 1 CPU per node unless otherwise explicitly stated.)

In QB: select=4:ncpus=1:mem=1gb

(In prior versions, "nodes=x" implied 1 CPU per node unless otherwise explicitly stated, so the ncpus=1 is
not inherited from the server default.)

qsub -l mem=16gb -lnodes=4

In QA: select=4:ncpus=1:mem=4gb
PBS Professional 19.2.3 User’s Guide UG-61

Chapter 4 Allocating Resources & Placing Jobs
(This is not 4:ncpus=2 because in prior versions, "nodes=x" implied 1 CPU per node unless otherwise
explicitly stated.)

In QB: select=4:ncpus=1:mem=4gb

(In prior versions, "nodes=x" implied 1 CPU per node unless otherwise explicitly stated, so the ncpus=1 is
not inherited from the server default.)

4.5 Limits on Resource Usage

Jobs are assigned limits on the amount of resources they can use. These limits apply to how much the whole job can use
(job-wide limit) and to how much the job can use at each host (host limit). Limits are applied only to resources the job
requests or inherits.

Your administrator can configure PBS to enforce limits on mem and ncpus, but the other limits are always enforced.

If you want to make sure that your job does not exceed a given amount of some resource, request that amount of the
resource.

4.5.1 Enforceable Resource Limits

Limits can be enforced on the following resources:

4.5.2 Origins of Resource Limits

Limits are derived from both requested resources and applied default resources. Resource limits are derived in the order
shown in section 4.4.1, “Applying Default Resources”, on page 59.

4.5.3 Job-wide Resource Limits

Job-wide resource limits set a limit for per-job resource usage. Job resource limits are derived from job-wide resources
and from totals of per-chunk consumable resources. Limits are derived from explicitly requested resources and default
resources.

Table 4-1: Enforceable Resource Limits

Resource Name Where Specified Where Enforced Always Enforced?

cput Host Host Always

mem Host Host Optional

ncpus Host Host Optional

pcput Job-wide Per-process Always

pmem Job-wide Per-process Always

pvmem Job-wide Per-process Always

vmem Host Host Always

walltime Job-wide Job-wide Always
UG-62 PBS Professional 19.2.3 User’s Guide

Allocating Resources & Placing Jobs Chapter 4
Job-wide resource limits that are derived from from sums of all chunks override those that are derived from job-wide
resources.

Example 4-11: Job-wide limits are derived from sums of chunks. With the following chunk request:

qsub -lselect=2:ncpus=3:mem=4gb:arch=linux

The following job-wide limits are derived:

ncpus=6

mem=8gb

4.5.4 Per-chunk Resource Limits

Each chunk's per-chunk limits determine how much of any resource can be used at that host. PBS sums the chunk limits
at each host, and uses that sum as the limit at that resource. Per-chunk resource usage limits are the amount of per-chunk
resources allocated to the job, both from explicit requests and from defaults.

4.5.4.1 Effects of Limits

If a running job exceeds its limit for walltime, the job is terminated.

If any of the job’s processes exceed the limit for pcput, pmem, or pvmem, the job is terminated.

If any of the host limits for mem, ncpus, cput, or vmem is exceeded, the job is terminated. These are host-level limits,
so if for example your job has two chunks on one host, and the processes on one chunk exceed one of these limits, but the
processes on the other are under the chunk limit, the job can continue to run as long as the total used for both chunks is
less than the host limit.

4.5.5 Examples of Memory Limits

Your administrator may choose to enforce memory limits. If this is the case, the memory used by the entire job cannot
exceed the amount in Resource_List.mem, and the memory used at any host cannot exceed the sum of the chunks on
that host. For the following examples, assume the following:

The queue has these settings:

resources_default.mem=200mb

default_chunk.mem=100mb

Example 4-12: A job requesting -l select=2:ncpus=1:mem=345mb uses 345mb from each of two vnodes and has
a job-wide limit of 690mb (2 * 345). The job's Resource_List.mem shows 690mb.

Example 4-13: A job requesting -l select=2:ncpus=2 takes 100mb via default_chunk from each vnode and has a
job-wide limit of 200mb (2 * 100mb). The job's Resource_List.mem shows 200mb.

Example 4-14: A job requesting -l ncpus=2 takes 200mb (inherited from resources_default and used to create the
select specification) from one vnode and has a job-wide limit of 200mb. The job's Resource_List.mem shows
200mb.

Example 4-15: A job requesting -lnodes=2 inherits 200mb from resources_default.mem which becomes the job-
wide limit. The memory is taken from the two vnodes, half (100mb) from each. The generated select specification
is 2:ncpus=1:mem=100mb. The job's Resource_List.mem shows 200mb.
PBS Professional 19.2.3 User’s Guide UG-63

Chapter 4 Allocating Resources & Placing Jobs
4.6 Viewing Resources

You can look at the resources on the server, queue, and vnodes. You can also see what resources are allocated to and used
by your job.

4.6.1 Viewing Server, Queue, and Vnode Resources

To see server resources:

qstat - Bf

To see queue resources:

qstat -Qf

To see vnode resources, use any of the following:

qmgr -c "list node <vnode name> <attribute name>"

pbsnodes -av

pbsnodes [<host list>]

Look at the following attributes:

resources_available.<resource name>

(Server, queue, vnode) Total amount of the resource available at the server, queue, or vnode; does not take into
account how much of the resource is in use.

resources_default.<resource name>

(Server, queue) Default value for job-wide resource. This amount is allocated to job if job does not request this
resource. Queue setting overrides server setting.

resources_max.<resource name>

(Server, queue) Maximum amount that a single job can request. Queue setting overrides server setting.

resources_min.<resource name>

(Queue) Minimum amount that a single job can request.

resources_assigned.<resource name>

(Server, queue, vnode) Total amount of the resource that has been allocated to running and exiting jobs and res-
ervations at the server, queue, or vnode.

4.6.2 Viewing Job Resources

To see the resources allocated to or used by your job:

qstat -f

Look at the following job attributes:

Resource_List.<resource name>

The amount of the resource that has been allocated to the job, including defaults.

resources_used.<resource name>

The amount of the resource used by the job.
UG-64 PBS Professional 19.2.3 User’s Guide

Allocating Resources & Placing Jobs Chapter 4
4.6.2.1 Resources Shown in Resource_List Job Attribute

When your job requests a job-wide resource or any of certain built-in host-level resources, the value requested is stored
in the job’s Resource_List attribute, as Resource_List.<resource name>=<value>. When you request a built-in
host-level resource inside multiple chunks, the value in Resource_List is the sum over all of the chunks for that
resource. For a list of the resources that can appear in Resource_List, see section 5.9.2, "Resources Requested by Job",
on page 241 of the PBS Professional Administrator’s Guide.

If your administrator has defined default values for any of those resources, and your job has inherited any defaults, those
defaults control the value shown in the Resource_List attribute.

4.7 Specifying Job Placement

You can specify how your job should be placed on vnodes. You can choose to place each chunk on a different host, or a
different vnode, or your job can use chunks that are all on one host. You can specify that all of the job’s chunks should
share a value for some resource.

Your job can request exclusive use of each vnode, or shared use with other jobs. Your job can request exclusive use of its
hosts.

We will cover the basics of specifying job placement in the following sections. For details on placing chunks for an MPI
job, see "Submitting Multiprocessor Jobs".

4.7.1 Using the place Statement

You use the place statement to specify how the job’s chunks are placed.

The place statement can contain the following elements in any order:

-l place=[<arrangement>][: <sharing>][: <grouping>]

where

arrangement

Whether this chunk is willing to share this vnode or host with other chunks from the same job. One of free |

pack | scatter | vscatter

sharing

Whether this this chunk is willing to share this vnode or host with other jobs. One of excl | shared | exclhost

grouping

Whether the chunks from this job should be placed on vnodes that all have the same value for a resource. Can
have only one instance of group=<resource name>

and where

Table 4-2: Placement Modifiers

Modifier Meaning

free Place job on any vnode(s)

pack All chunks will be taken from one host

scatter Only one chunk is taken from any host
PBS Professional 19.2.3 User’s Guide UG-65

Chapter 4 Allocating Resources & Placing Jobs
The place statement may be not be used without the select statement.

The place statement may not begin with a colon.

4.7.1.1 Specifying Arrangement of Chunks

To place your job’s chunks wherever they fit:

-l place=free

To place all of the job’s chunks on a single host:

-l place=pack

To place each chunk on its own host:

-l place=scatter

To place each chunk on its own vnode:

-l place=vscatter

4.7.1.1.i Caveats and Restrictions for Arrangement

• For all arrangements except vscatter, chunks cannot be split across hosts, but they can be split across vnodes on the
same host. If a job does not request vscatter for its arrangement, any chunk can be broken across vnodes. This
means that one chunk could be taken from more than one vnode.

• If the job requests vscatter for its arrangement, no chunk can be larger than a vnode, and no chunk can be split
across vnodes. This behavior is different from other values for arrangement, where chunks can be split across
vnodes.

4.7.1.2 Specifying Shared or Exclusive Use of Vnodes

Each vnode can be allocated exclusively to one job, or its resources can be shared among jobs. Hosts can also be allo-
cated exclusively to one job, or shared among jobs.

vscatter Only one chunk is taken from any vnode.

Each chunk must fit on a vnode.

excl Only this job uses the vnodes chosen

exclhost The entire host is allocated to this job

shared This job can share the vnodes chosen

group=<resource> Chunks will be placed on vnodes according to a resource shared by those vnodes. This
resource must be a string or string array. All vnodes in the group must have a common value
for the resource.

Table 4-2: Placement Modifiers

Modifier Meaning
UG-66 PBS Professional 19.2.3 User’s Guide

Allocating Resources & Placing Jobs Chapter 4
How vnodes are allocated to jobs is determined by a combination of the vnode’s sharing attribute and the job’s resource
request. The possible values for the vnode sharing attribute, and how they interact with a job’s placement request, are
described in “sharing” on page 315 of the PBS Professional Reference Guide. The following table expands on this:

If a vnode is allocated exclusively to a job, all of its resources are assigned to the job. The state of the vnode becomes
job-exclusive. No other job can use the vnode.

If a host is to be allocated exclusively to one job, all of the host must be used: if any vnode from a host has its sharing
attribute set to either default_exclhost or force_exclhost, all vnodes on that host must have the same value for the shar-
ing attribute.

If your job requests exclusive placement, and it is in a reservation, the reservation must also request exclusive placement
via -l place=excl.

To see the value for a vnode’s sharing attribute, you can do either of the following:

• Use qmgr:
Qmgr: list node <vnode name> sharing

• Use pbsnodes:
pbsnodes -av

4.7.1.3 Grouping on a Resource

You can specify that all of the chunks for your job should run on vnodes that have the same value for a selected resource.

To group your job’s chunks this way, use the following format:

-l place=group=<resource name>

where resource name is a string or string array.

The value of the resource can be one or more strings at each vnode, but there must be one string that is the same for each
vnode. For example, if the resource is router, the value can be “r1i0,r1” at one vnode, and “r1i1,r1” at another vnode,
and these vnodes can be grouped because they share the string "r1".

Using the method of grouping on a resource, you cannot specify what the value of the resource should be, only that all
vnodes have the same value. If you need the resource to have a specific value, specify that value in the description of the
chunks.

Table 4-3: How Vnode sharing Attribute Affects Vnode Allocation

Value of Vnode
sharing Attribute

Effect on Allocation

not set The job’s arrangement request determines how vnodes are allocated to the job. If there is no
specification, vnodes are shared.

default_share Vnodes are shared unless the job explicitly requests exclusive use of the vnodes.

default_excl Vnodes are allocated exclusively to the job unless the job explicitly requests shared alloca-
tion.

default_exclhost All vnodes from this host are allocated exclusively to the job, unless the job explicitly
requests shared allocation.

ignore_excl Vnodes are shared, regardless of the job’s request.

force_excl Vnodes are allocated exclusively to the job, regardless of the job’s request.

force_exclhost All vnodes from this host are allocated exclusively to the job, regardless of the job’s request.
PBS Professional 19.2.3 User’s Guide UG-67

Chapter 4 Allocating Resources & Placing Jobs
4.7.1.3.i Grouping vs. Placement Sets

Your administrator may define placement sets for your site. A placement set is a group of vnodes that share a value for a
resource. By default, placement sets attempt to group vnodes that are “close to” each other. If your job doesn’t request a
specific placement, and placement sets are defined, your job may automatically run in a placement set. See "Placement
Sets" on page 171 in the PBS Professional Administrator’s Guide.

If your job requests grouping by a resource, using place=group=resource, the chunks are placed as requested and place-
ment sets are ignored.

If your job requests grouping but no group contains the required number of vnodes, grouping is ignored.

4.7.2 How the Job Gets its Place Statement

If the administrator has defined default values for arrangement, sharing, and grouping, each job inherits these unless it
explicitly requests at least one. That means that if your job requests arrangement, but not sharing or grouping, it will not
inherit values for sharing or grouping. For example, the administrator sets a default of
place=pack:exclhost:group=host. Job A requests place=free, but doesn’t specify sharing or grouping, so
Job A does not inherit sharing or grouping. Job B does not request any placement, so it inherits all three.

The place statement can be specified, in order of precedence, via:

1. Explicit placement request in qalter

2. Explicit placement request in qsub

3. Explicit placement request in PBS job script directives

4. Default qsub place statement

5. Queue default placement rules

6. Server default placement rules

7. Built-in default conversion and placement rules

4.7.3 Caveats and Restrictions for Specifying Placement

• The place specification cannot be used without the select specification. In other words, you can only specify place-
ment when you have specified chunks.

• A select specification cannot be used with a nodes specification.

• A select specification cannot be used with old-style resource requests such as -lncpus, -lmem, -lvmem, -larch,
-lhost.

• When using place=group=<resource>, the resource must be a string or string array.

• Do not mix old and new syntax when requesting placement. See section 4.8, “Backward Compatibility”, on page 71
for a description of old syntax.

• If your job requests exclusive placement, and it is in a reservation, the reservation must also request exclusive place-
ment via -l place=excl.
UG-68 PBS Professional 19.2.3 User’s Guide

Allocating Resources & Placing Jobs Chapter 4
4.7.4 Examples of Specifying Placement

Unless otherwise specified, the vnodes allocated to the job will be allocated as shared or exclusive based on the setting of
the vnode’s sharing attribute. Each of the following shows how you would use -l select= and -l place=.

1. A job that will fit in a single host but not in any of the vnodes, packed into the fewest vnodes:
-l select=1:ncpus=10:mem=20gb

-l place=pack

In earlier versions, this would have been:

-lncpus=10,mem=20gb

2. Request four chunks, each with 1 CPU and 4GB of memory taken from anywhere.

-l select=4:ncpus=1:mem=4GB

-l place=free

3. Allocate 4 chunks, each with 1 CPU and 2GB of memory from between
PBS Professional 19.2.3 User’s Guide UG-69

Chapter 4 Allocating Resources & Placing Jobs
 one and four vnodes which have an arch of “linux”.

-l select=4:ncpus=1:mem=2GB:arch=linux -l place=free

4. Allocate four chunks on 1 to 4 vnodes where each vnode must have 1 CPU, 3GB of memory and 1 node-locked dyna
license available for each chunk.

-l select=4:dyna=1:ncpus=1:mem=3GB -l place=free

5. Allocate four chunks on 1 to 4 vnodes, and 4 floating dyna licenses. This assumes “dyna” is specified as a server
dynamic resource.

-l dyna=4 -l select=4:ncpus=1:mem=3GB -l place=free

6. This selects exactly 4 vnodes where the arch is linux, and each vnode will be on a separate host. Each vnode will
have 1 CPU and 2GB of memory allocated to the job.

-lselect=4:mem=2GB:ncpus=1:arch=linux -lplace=scatter

7. This will allocate 3 chunks, each with 1 CPU and 10GB of memory. This will also reserve 100mb of scratch space if
scratch is to be accounted . Scratch is assumed to be on a file system common to all hosts. The value of “place”
depends on the default which is “place=free”.

-l scratch=100mb -l select=3:ncpus=1:mem=10GB

8. This will allocate 2 CPUs and 50GB of memory on a host named zooland. The value of “place” depends on the
default which defaults to “place=free”:

-l select=1:ncpus=2:mem=50gb:host=zooland

9. This will allocate 1 CPU and 6GB of memory and one host-locked swlicense from each of two hosts:

-l select=2:ncpus=1:mem=6gb:swlicense=1

-lplace=scatter

10. Request free placement of 10 CPUs across hosts:

-l select=10:ncpus=1

-l place=free

11. Here is an odd-sized job that will fit on a single HPE SGI system, but not on any one node-board. We request an odd
number of CPUs that are not shared, so they must be “rounded up”:

-l select=1:ncpus=3:mem=6gb

-l place=pack:excl

12. Here is an odd-sized job that will fit on a single HPE SGI system, but not on any one node-board. We are asking for
small number of CPUs but a large amount of memory:

-l select=1:ncpus=1:mem=25gb

-l place=pack:excl

13. Here is a job that may be run across multiple HPE SGI systems, packed into the fewest vnodes:

-l select=2:ncpus=10:mem=12gb

-l place=free

14. Submit a job that must be run across multiple HPE SGI systems, packed into the fewest vnodes:

-l select=2:ncpus=10:mem=12gb

-l place=scatter

15. Request free placement across nodeboards within a single host:

-l select=1:ncpus=10:mem=10gb
UG-70 PBS Professional 19.2.3 User’s Guide

Allocating Resources & Placing Jobs Chapter 4
-l place=group=host

16. Request free placement across vnodes on multiple HPE SGI systems:

-l select=10:ncpus=1:mem=1gb

-l place=free

17. Here is a small job that uses a shared cpuset:

-l select=1:ncpus=1:mem=512kb

-l place=pack:shared

18. Request a special resource available on a limited set of nodeboards, such as a graphics card:

-l select= 1:ncpus=2:mem=2gb:graphics=True + 1:ncpus=20:mem=20gb:graphics=False

-l place=pack:excl

19. Align SMP jobs on c-brick boundaries:

-l select=1:ncpus=4:mem=6gb

-l place=pack:group=cbrick

20. Align a large job within one router, if it fits within a router:

-l select=1:ncpus=100:mem=200gb

-l place=pack:group=router

21. Fit large jobs that do not fit within a single router into as few available routers as possible. Here, RES is the resource
used for node grouping:

-l select=1:ncpus=300:mem=300gb

-l place=pack:group=<RES>

22. To submit an MPI job, specify one chunk per MPI task. For a 10-way MPI job with 2gb of memory per MPI task:

-l select=10:ncpus=1:mem=2gb

23. To submit a non-MPI job (including a 1-CPU job or an OpenMP or shared memory) job, use a single chunk. For a
2-CPU job requiring 10gb of memory:

-l select=1:ncpus=2:mem=10gb

4.8 Backward Compatibility

4.8.1 Old-style Resource Specifications

Old versions of PBS allowed job submitters to ask for resources outside of a select statement, using “-lre-
source=value”, where those resources must now be requested in chunks, inside a select statement. This old style of
resource request was called a “resource specification”. Resource specification syntax is deprecated.

For backward compatibility, any resource specification is converted to select and place statements, and any defaults are
applied.

4.8.2 Old-style Node Specifications

In early versions of PBS, job submitters used “-l nodes=...” in what was called a “node specification” to specify
where the job should run. The syntax for a “node specification” is deprecated.
PBS Professional 19.2.3 User’s Guide UG-71

Chapter 4 Allocating Resources & Placing Jobs
For backward compatibility, a legal node specification or resource specification is converted into select and place direc-
tives; we show how in following sections.

4.8.3 Conversion of Old Style to New

4.8.3.1 Conversion of Resource Specifications

If your job has an old-style resource specification, PBS creates a select specification requesting 1 chunk containing the
resources specified by the job and server and/or queue default resources. Resource specification format:

-l<resource>=<value>[:<resource>=<value> ...]

The resource specification is converted to:

-lselect=1[:<resource>=<value> ...]

-lplace=pack

with one instance of resource=value for each of the following vnode-level resources in the resource request:

built-in resources: ncpus | mem | vmem | arch | host

site-defined vnode-level resources

For example, a job submitted with

qsub -l ncpus=4:mem=123mb:arch=linux

gets the following select statement:

select=1:ncpus=4:mem=123mb:arch=linux

4.8.3.2 Conversion of Node Specifications

If your job requests a node specification, PBS creates a select and place specification, according to the following rules.

Old node specification format:

-lnodes=[N:<spec list> | <spec list>]

[[+N:<spec list> | +<spec list>] ...]

[#<suffix> ...][-lncpus=Z]

where:

spec list has syntax: <spec>[:<spec> ...]

spec is any of: hostname | property | ncpus=X | cpp=X | ppn=P

suffix is any of: property | excl | shared

N and P are positive integers

X and Z are non-negative integers

The node specification is converted into select and place statements as follows:

Each spec list is converted into one chunk, so that N:<spec list> is converted into N chunks.

If spec is hostname :

The chunk will include host=hostname

If spec matches any vnode's resources_available.<hostname> value:

The chunk will include host=hostname

If spec is property :
UG-72 PBS Professional 19.2.3 User’s Guide

Allocating Resources & Placing Jobs Chapter 4
The chunk will include <property>=true

Property must be a site-defined vnode-level boolean resource.

If spec is ncpus=X or cpp=X :

The chunk will include ncpus=X

If no spec is ncpus=X and no spec is cpp=X :

The chunk will include ncpus=P

If spec is ppn=P :

The chunk will include mpiprocs=P

If the nodespec is

-lnodes=N:ppn=P

It is converted to

-lselect=N:ncpus=P:mpiprocs=P

Example:

-lnodes=4:ppn=2

is converted into

-lselect=4:ncpus=2:mpiprocs=2

If -lncpus=Z is specified and no spec contains ncpus=X and no spec is cpp=X :

Every chunk will include ncpus=W, where W is Z divided by the total number of chunks. (Note: W must be an inte-
ger; Z must be evenly divisible by the number of chunks.)

If property is a suffix :

All chunks will include property=true

If excl is a suffix :

The placement directive will be -lplace=scatter:excl

If shared is a suffix :

The placement directive will be -lplace=scatter:shared

If neither excl nor shared is a suffix :

The placement directive will be -lplace=scatter

Example:

-lnodes=3:green:ncpus=2:ppn=2+2:red

is converted to:

-l select=3:green=true:ncpus=4:mpiprocs=2+ 2:red=true:ncpus=1

-l place=scatter

4.8.3.3 Examples of Converting Old Syntax to New

1. Request CPUs and memory on a single host using old syntax:
-l ncpus=5,mem=10gb
PBS Professional 19.2.3 User’s Guide UG-73

Chapter 4 Allocating Resources & Placing Jobs
is converted into the equivalent:

-l select=1:ncpus=5:mem=10gb

-l place=pack

2. Request CPUs and memory on a named host along with custom resources including a floating license using old syn-
tax:

-l ncpus=1,mem=5mb,host=sunny,opti=1,arch=arch1

is converted to the equivalent:

-l select=1:ncpus=1:mem=5gb:host=sunny:arch=arch1

-l place=pack

-l opti=1

3. Request one host with a certain property using old syntax:

-lnodes=1:property

is converted to the equivalent:

-l select=1:ncpus=1:property=True

-l place=scatter

4. Request 2 CPUs on each of four hosts with a given property using old syntax:

-lnodes=4:property:ncpus=2

is converted to the equivalent:

-l select=4: ncpus=2:property=True

-l place=scatter

5. Request 1 CPU on each of 14 hosts asking for certain software, licenses and a job limit amount of memory using old
syntax:

-lnodes=14:mpi-fluent:ncpus=1 -lfluent=1,fluent-all=1, fluent-par=13

-l mem=280mb

is converted to the equivalent:

-l select=14:ncpus=1:mem=20mb:mpi_fluent=True

-l place=scatter

-l fluent=1,fluent-all=1,fluent-par=13

6. Requesting licenses using old syntax:

-lnodes=3:dyna-mpi-Linux:ncpus=2 -ldyna=6,mem=100mb, software=dyna

is converted to the equivalent:

-l select=3:ncpus=2:mem=33mb: dyna-mpi-Linux=True

-l place=scatter

-l software=dyna

-l dyna=6

7. Requesting licenses using old syntax:

 -l ncpus=2,app_lic=6,mem=200mb -l software=app
UG-74 PBS Professional 19.2.3 User’s Guide

Allocating Resources & Placing Jobs Chapter 4
is converted to the equivalent:

-l select=1:ncpus=2:mem=200mb

-l place=pack

-l software=app

-l app_lic=6

8. Additional example using old syntax:

-lnodes=1:fserver+15:noserver

is converted to the equivalent:

-l select=1:ncpus=1:fserver=True + 15:ncpus=1:noserver=True

-l place=scatter

but could also be more easily specified with something like:

-l select=1:ncpus=1:fserver=True + 15:ncpus=1:fserver=False

-l place=scatter

9. Allocate 4 vnodes, each with 6 CPUs with 3 MPI processes per vnode, with each vnode on a separate host. The
memory allocated would be one-fourth of the memory specified by the queue or server default if one existed. This
results in a different placement of the job from version 5.4:

-lnodes=4:ppn=3:ncpus=2

is converted to:

-l select=4:ncpus=6:mpiprocs=3 -l place=scatter

10. Allocate 4 vnodes, from 4 separate hosts, with the property blue. The amount of memory allocated from each vnode
is 2560MB (= 10GB / 4) rather than 10GB from each vnode.

-lnodes=4:blue:ncpus=2 -l mem=10GB

is converted to:

-l select=4:blue=True:ncpus=2:mem=2560mb -lplace=scatter

4.8.4 Caveats for Using Old Syntax

4.8.4.1 Changes in Behavior

Most jobs submitted with "-lnodes" will continue to work as expected. These jobs will be automatically converted to
the new syntax. However, job tasks may execute in an unexpected order, because vnodes may be assigned in a different
order. Jobs submitted with old syntax that ran successfully on versions of PBS Professional prior to 8.0 can fail because
a limit that was per-chunk is now job-wide.

Example 4-16: A job submitted using -lnodes=X -lmem=M that fails because the mem limit is now job-wide. If the
following conditions are true:

• PBS Professional 9.0 or later using standard MPICH

• The job is submitted with qsub -lnodes=5 -lmem=10GB

• The master process of this job tries to use more than 2GB

The job is killed, where in <= 7.0 the master process could use 10GB before being killed. 10GB is now a job-wide
limit, divided up into a 2GB limit per chunk.
PBS Professional 19.2.3 User’s Guide UG-75

Chapter 4 Allocating Resources & Placing Jobs
4.8.4.2 Do Not Mix Old and New Styles

Do not mix old style resource or node specifications (“-l<resource>=<value>” or “-lnodes”) with select and
place statements (“-lselect=” or “-lplace=”). Do not use both in the command line. Do not use both in the job
script. Do not use one in a job script and the other on the command line. This will result in an error.

4.8.4.3 Resource Request Conversion Dependent on Where

Resources are Defined

A job’s resource request is converted from old-style to new according to various rules, one of which is that the conver-
sion is dependent upon where resources are defined. For example: The boolean resource “Red” is defined on the server,
and the boolean resource “Blue” is defined at the host level. A job requests “qsub -l Blue=true”. This looks like
an old-style resource request, and PBS checks to see where Blue is defined. Since Blue is defined at the host level, the
request is converted into “-l select=1:Blue=true”. However, if a job requests “qsub -l Red=true”, while
this looks like an old-style resource request, PBS does not convert it to a chunk request because Red is defined at the
server.

4.8.4.4 Properties are Deprecated

The syntax for requesting properties is deprecated. Your administrator has replaced properties with Booleans.

4.8.4.5 Replace cpp with ncpus

Specifying “cpp” is part of the old syntax, and should be replaced with “ncpus”.

4.8.4.6 Environment Variables Set During Conversion

1. When a node specification is converted into a select statement, the job has the environment variables
NCPUS and OMP_NUM_THREADS set to the old value of ncpus in the first piece of the old node spec-
ification. This may produce incompatibilities with prior versions when a complex node specification using
different values of ncpus and ppn in different pieces is converted.
UG-76 PBS Professional 19.2.3 User’s Guide

5

Multiprocessor Jobs

5.1 Submitting Multiprocessor Jobs

Before you read this chapter, please read Chapter 4, "Allocating Resources & Placing Jobs", on page 51.

5.1.1 Assigning the Chunks You Want

PBS assigns chunks to job processes in the order in which the chunks appear in the select statement. PBS takes the first
chunk from the primary execution host; this is where the top task of the job runs.

Example 5-1: You want three chunks, where the first has two CPUs and 20 GB of memory, the second has four CPUs
and 100 GB of memory, and the third has one CPU and five GB of memory:

-lselect=1:ncpus=2:mem=20gb+ncpus=4:mem=100gb+mem=5gb

5.1.1.1 Specifying Primary Execution Host

The job’s primary execution host is the host that supplies the vnode to satisfy the first chunk requested by the job.

5.1.1.2 Request Most Specific Chunks First

Chunk requests are interpreted from left to right. The more specific the chunk, the earlier it should be in the order. For
example, if you require a specific host for chunk A, but chunk B is not host-specific, request Chunk A first.

5.1.2 The Job Node File

For each job, PBS creates a job-specific “host file” or “node file”, which is a text file containing the name(s) of the
host(s) containing the vnode(s) allocated to that job. The file is created by the MoM on the primary execution host, and
is available only on that host.

5.1.2.1 Node File Format and Contents

The node file contains a list of host names, one per line. The name of the host is the value in resources_available.host
of the allocated vnode(s). The order in which hosts appear in the PBS node file is the order in which chunks are specified
in the selection directive.

The node file contains one line per MPI process with the name of the host on which that process should execute. The
number of MPI processes for a job, and the contents of the node file, are controlled by the value of the resource
mpiprocs. mpiprocs is the number of MPI processes per chunk, and defaults to 1 where the chunk contains CPUs, 0
otherwise.
PBS Professional 19.2.3 User’s Guide UG-77

Chapter 5 Multiprocessor Jobs
For each chunk requesting mpiprocs=M, the name of the host from which that chunk is allocated is written in the node
file M times. Therefore the number of lines in the node file is the sum of requested mpiprocs for all chunks requested by
the job.

Example 5-2: Two MPI processes run on HostA and one MPI process runs on HostB. The node file looks like this:

HostA

HostA

HostB

5.1.2.2 Name and Location of Node File

The file is created by the MoM on the primary execution host, in PBS_HOME/aux/JOB_ID, where JOB_ID is the job
identifier for that job.

The full path and name for the node file is set in the job’s environment, in the environment variable PBS_NODEFILE.

5.1.2.3 Node File for Old-style Requests

For jobs which request resources using the old -lnodes=nodespec format, the host for each vnode allocated to the job is
listed N times, where N is the number of MPI ranks on the vnode. The number of MPI ranks is specified via the ppn
resource.

Example 5-3: Request four vnodes, each with two MPI processes, where each process has three threads, and each thread
has a CPU:

qsub -lnodes=4:ncpus=3:ppn=2

This results in each of the four hosts being written twice, in the order in which the vnodes are assigned to the job.

5.1.2.4 Using and Modifying the Node File

You can use $PBS_NODEFILE in your job script.

You can modify the node file. You can remove entries or sort the entries. PBS does not use the contents of the node file.

5.1.2.5 Node File Caveats

Do not add entries for new hosts; PBS may terminate processes on those hosts because PBS does not expect the pro-
cesses to be running there. Adding entries on the same host may cause the job to be terminated because it is using more
CPUs than it requested.

5.1.2.6 Viewing Execution Hosts

You can see which host is the primary execution host: the primary execution host is the first host listed in the job’s node
file.

5.1.3 Specifying Number of MPI Processes Per Chunk

How you request chunks matters. First, the number of MPI processes per chunk defaults to 1 for chunks with CPUs, and
0 for chunks without CPUs, unless you specify this value using the mpiprocs resource. Second, you can specify
whether MPI processes share CPUs. For example, requesting one chunk with four CPUs and four MPI processes is not
the same as requesting four chunks each with one CPU and one MPI process. In the first case, all four MPI processes are
sharing all four CPUs. In the second case, each process gets its own CPU.
UG-78 PBS Professional 19.2.3 User’s Guide

Multiprocessor Jobs Chapter 5
You request the number of MPI processes you want for each chunk using the mpiprocs resource. For example, to
request two MPI processes for each of four chunks, where each chunk has two CPUs:

-lselect=4:ncpus=2:mpiprocs=2

If you don’t explicitly request a value for the mpiprocs resource, it defaults to 1 for each chunk requesting CPUs, and 0
for chunks not requesting CPUs.

Example 5-4: To request one chunk with two MPI processes and one chunk with one MPI process, where both chunks
have two CPUs:

-lselect=ncpus=2:mpiprocs=2+ncpus=2

Example 5-5: A request for three vnodes, each with one MPI process:

qsub -l select=3:ncpus=2

This results in the following node file:

<hostname for 1st vnode>

<hostname for 2nd vnode>

<hostname for 3rd vnode>

Example 5-6: If you want to run two MPI processes on each of three hosts and have the MPI processes share a single
processor on each host, request the following:

-lselect=3:ncpus=1:mpiprocs=2

The node file then contains the following list:

hostname for VnodeA

hostname for VnodeA

hostname for VnodeB

hostname for VnodeB

hostname for VnodeC

hostname for VnodeC

Example 5-7: If you want three chunks, each with two CPUs and running two MPI processes, use:

-l select=3:ncpus=2:mpiprocs=2...

The node file then contains the following list:

hostname for VnodeA

hostname for VnodeA

hostname for VnodeB

hostname for VnodeB

hostname for VnodeC

hostname for VnodeC

Notice that the node file is the same as the previous example, even though the number of CPUs used is different.

Example 5-8: If you want four MPI processes, where each process has its own CPU:

-lselect=4:ncpus=1

See “Resources Built Into PBS” on page 258 of the PBS Professional Reference Guide for a definitions of the mpiprocs
resource.
PBS Professional 19.2.3 User’s Guide UG-79

Chapter 5 Multiprocessor Jobs
5.1.3.1 Chunks With No MPI Processes

If you request a chunk that has no MPI processes, PBS may take that chunk from a vnode which has already supplied
another chunk. You request a chunk that has no MPI processes using either of the following:

-lselect=1:ncpus=0

-lselect=1:ncpus=2:mpiprocs=0

5.1.4 Caveats and Advice for Multiprocessor Jobs

5.1.4.1 Requesting Uniform Processors

Some MPI jobs require the work on all vnodes to be at the same stage before moving to the next stage. For these appli-
cations, the work can proceed only at the pace of the slowest vnode, because faster vnodes must wait while it catches up.
In this case, you may find it useful to ensure that the job’s vnodes are homogeneous.

If there is a resource that identifies the architecture, type, or speed of the vnodes, you can use it to ensure that all chunks
are taken from vnodes with the same value. You can either request a specific value for this resource for all chunks, or
you can group vnodes according to the value of the resource. See section 4.7.1.3, “Grouping on a Resource”, on page 67.

Example 5-9: The resource that identifies the speed is named speed, and your job requests 16 chunks, each with two
CPUs, two MPI processes, all with speed equal to fast:

-lselect=16:ncpus=2:mpiprocs=2:speed=fast

Example 5-10: Request 16 chunks where each chunk has two CPUs, using grouping to ensure that all chunks share the
same speed. The resource that identifies the speed is named speed:

-lselect=16:ncpus=2:mpiprocs=2:place=group=speed

5.1.4.2 Requesting Storage on NFS Server

One of the vnodes in your complex may act as an NFS server to the rest of the vnodes, so that all vnodes have access to
the storage on the NFS server.

Example 5-11: The scratch resource is shared among all the vnodes in the complex, and is requested from a central
location, called the “nfs_server” vnode. To request two vnodes, each with two CPUs to do calculations, and one
vnode with 10gb of memory and no MPI processes:

-l select=2:ncpus=2+1:host=nfs_server:scratch=10gb:ncpus=0

With this request, your job has one MPI process on each chunk containing CPUs, and no MPI processes on the mem-
ory-only chunk. The job shows up as having a chunk on the “nfs_server” host.

5.1.5 File Staging for Multiprocessor Jobs

PBS stages files to and from the primary execution host only.

5.1.6 Prologue and Epilogue

The prologue is run as root on the primary host, with the current working directory set to PBS_HOME/mom_priv, and
with PBS_JOBDIR and TMPDIR set in its environment.

PBS runs the epilogue as root on the primary host. The epilogue is executed with its current working directory set to the
job's staging and execution directory, and with PBS_JOBDIR and TMPDIR set in its environment.
UG-80 PBS Professional 19.2.3 User’s Guide

Multiprocessor Jobs Chapter 5
5.1.7 MPI Environment Variables

NCPUS

PBS sets the NCPUS environment variable in the job’s environment on the primary execution host. PBS sets
NCPUS to the value of ncpus requested for the first chunk.

OMP_NUM_THREADS

PBS sets the OMP_NUM_THREADS environment variable in the job’s environment on the primary execution
host. PBS sets this variable to the value of ompthreads requested for the first chunk, which defaults to the
value of ncpus requested for the first chunk.

5.1.8 Examples of Multiprocessor Jobs

Example 5-12: For a 10-way MPI job with 2gb of memory per MPI task:

qsub -l select=10:ncpus=1:mem=2gb

Example 5-13: If you have a cluster of small systems with for example two CPUs each, and you wish to submit an MPI
job that will run on four separate hosts:

qsub -l select=4:ncpus=1 -l place=scatter

In this example, the node file contains one entry for each of the hosts allocated to the job, which is four entries.

The variables NCPUS and OMP_NUM_THREADS are set to one.

Example 5-14: If you do not care where the four MPI processes are run:

qsub -l select=4:ncpus=1 -l place=free

Here, the job runs on two, three, or four hosts depending on what is available.

For this example, the node file contains four entries. These are either four separate hosts, or three hosts, one of
which is repeated once, or two hosts, etc.

NCPUS and OMP_NUM_THREADS are set to 1, the number of CPUs allocated from the first chunk.

5.1.9 Submitting SMP Jobs

To submit an SMP job, simply request a single chunk containing all of the required CPUs and memory, and if necessary,
specify the hostname. For example:

qsub -l select=ncpus=8:mem=20gb:host=host1

When the job is run, the node file will contain one entry, the name of the selected execution host.

The job will have two environment variables, NCPUS and OMP_NUM_THREADS, set to the number of CPUs allo-
cated.

5.2 Using MPI with PBS

5.2.1 Using an Integrated MPI

Many MPIs are integrated with PBS. PBS provides tools to integrate most of them; a few MPIs supply the integration.
When a job is run under an integrated MPI, PBS can track resource usage, signal job processes, and perform accounting
for all processes of the job.
PBS Professional 19.2.3 User’s Guide UG-81

Chapter 5 Multiprocessor Jobs
When a job is run under an MPI that is not integrated with PBS, PBS is limited to managing the job only on the primary
vnode, so resource tracking, job signaling, and accounting happen only for the processes on the primary vnode.

The instructions that follow are for integrated MPIs. Check with your administrator to find out which MPIs are inte-
grated at your site. If an MPI is not integrated with PBS, you use it as you would outside of PBS.

Some of the integrated MPIs have slightly different command lines. See the instructions for each MPI.

The following table lists the supported MPIs and gives links to instructions for using each MPI:

Table 5-1: List of Supported MPIs

MPI Name Versions Instructions for Use

HP MPI 1.08.03

2.0.0

See section 5.2.4, “HP MPI with PBS”, on page 84

Intel MPI 2.0.022

3

4

See section 5.2.7, “Intel MPI 2.0.022, 3, and 4 with PBS”, on page 85

Intel MPI 4.0.3 on Linux See section 5.2.5, “Intel MPI 4.0.3 On Linux with PBS”, on page 85

Intel MPI 4.0.3 on Windows See section 5.2.6, “Intel MPI 4.0.3 On Windows with PBS”, on page 85

LAM MPI 6.5.9 Deprecated. See section 5.2.8.2, “Using LAM 6.5.9 with PBS”, on page 89

LAM MPI 7.0.6

7.1.1

See section 5.2.8.1, “Using LAM 7.x with PBS”, on page 88

MPICH-P4

Deprecated.

1.2.5

1.2.6

1.2.7

See section 5.2.9, “MPICH-P4 with PBS”, on page 89

MPICH-GM

Deprecated.

See section 5.2.10, “MPICH-GM with PBS”, on page 90

MPICH-MX

Deprecated.

See section 5.2.11, “MPICH-MX with PBS”, on page 93

MPICH2

Deprecated.

1.0.3

1.0.5

1.0.7

On Linux

See section 5.2.12, “MPICH2 with PBS on Linux”, on page 95

MPICH2 1.4.1p1 on Windows See section 5.2.13, “MPICH2 1.4.1p1 On Windows with PBS”, on page 98

MVAPICH

Deprecated.

1.2 See section 5.2.14, “MVAPICH with PBS”, on page 98

MVAPICH2 1.8 See section 5.2.15, “MVAPICH2 with PBS”, on page 99

Open MPI 1.4.x See section 5.2.16, “Open MPI with PBS”, on page 101

Platform MPI 8.0 See section 5.2.17, “Platform MPI with PBS”, on page 101

HPE MPI Any See section 5.2.18, “HPE MPI with PBS”, on page 102
UG-82 PBS Professional 19.2.3 User’s Guide

Multiprocessor Jobs Chapter 5
5.2.1.1 Integration Caveats

• Some MPI command lines are slightly different; the differences for each are described.

5.2.1.2 Integrating an MPI on the Fly

The PBS administrator can perform the steps to integrate the supported MPIs. For non-integrated MPIs, you can inte-
grate them on the fly. You integrate Intel MPI 4.0.3 using environment variables; see section 5.2.5, “Intel MPI 4.0.3 On
Linux with PBS”, on page 85. For the rest, you integrate them using the pbs_tmrsh command.

5.2.1.2.i Integrating an MPI on the Fly using the pbs_tmrsh Command

You should not use pbs_tmrsh with an integrated MPI or with Intel MPI 4.0.3.

This command emulates rsh, but uses the PBS TM interface to talk directly to pbs_mom on sister vnodes. The
pbs_tmrsh command informs the primary and sister MoMs about job processes on sister vnodes. When the job uses
pbs_tmrsh, PBS can track resource usage for all job processes.

You use pbs_tmrsh as your rsh or ssh command. To use pbs_tmrsh, set the appropriate environment variable to
pbs_tmrsh. For example, to integrate MPICH, set the P4_RSHCOMMAND environment variable to pbs_tmrsh, and
to integrate HP MPI, set MPI_REMSH to pbs_tmrsh.

The following figure illustrates how the pbs_tmrsh command can be used to integrate an MPI on the fly:

Figure 5-1: PBS knows about processes on vnodes 2 and 3, because pbs_tmrsh talks directly to

pbs_mom, and pbs_mom starts the processes on vnodes 2 and 3

Vnode 3

...

(Job script)

Vnode 1

#PBS −lselect=3:ncpus=2:mpiprocs=2

...

Session tracked by pbs_mom

(mpirun using pbs_tmrsh) −hostfile $PBS_NODEFILE a.out

Vnode 2

a.outpbs_mom

pbs_tmrsh vnode 2

pbs_tmrsh vnode 3

a.out

a.out

a.out

pbs_mom

a.out

a.out
PBS Professional 19.2.3 User’s Guide UG-83

Chapter 5 Multiprocessor Jobs
5.2.1.2.ii Caveats for the pbs_tmrsh Command

• This command cannot be used outside of a PBS job; if used outside a PBS job, this command will fail.

• The pbs_tmrsh command does not perform exactly like rsh. For example, you cannot pipe output from
pbs_tmrsh; this will fail.

5.2.2 Prerequisites to Using MPI with PBS

The MPI that you intend to use with PBS must be working before you try to use it with PBS. You must be able to run an
MPI job outside of PBS.

5.2.3 Caveats for Using MPIs

Some applications write scratch files to a temporary location. PBS makes a temporary directory available for this, and
puts the path in the TMPDIR environment variable. The location of the temporary directory is host-dependent. If you
are using an MPI other than LAM MPI or Open MPI, and your application needs scratch space, the temporary directory
for the job should be consistent across execution hosts. Your PBS administrator can specify a root for the temporary
directory on each host using the $tmpdir MoM parameter. In this case, the TMPDIR environment variable is set to the
full path of the resulting temporary directory. Do not attempt to set TMPDIR.

5.2.4 HP MPI with PBS

HP MPI can be integrated with PBS on Linux so that PBS can track resource usage, signal processes, and perform
accounting, for all job processes. Your PBS administrator can integrate HP MPI with PBS.

5.2.4.1 Setting up Your Environment for HP MPI

In order to override the default rsh, set PBS_RSHCOMMAND in your job script:

export PBS_RSHCOMMAND=<rsh choice>

5.2.4.2 Using HP MPI with PBS

You can run jobs under PBS using HP MPI without making any changes to your MPI command line.

5.2.4.3 Options

When running a PBS HP MPI job, you can use the same arguments to the mpirun command as you would outside of
PBS. The following options are treated differently under PBS:

-h <host>

Ignored

-l <user>

Ignored

-np <number>

Modified to fit the available resources

5.2.4.4 Caveats for HP MPI with PBS

Under the integrated HP MPI, the job’s working directory is changed to your home directory.
UG-84 PBS Professional 19.2.3 User’s Guide

Multiprocessor Jobs Chapter 5
5.2.5 Intel MPI 4.0.3 On Linux with PBS

If your PBS administrator has integrated Intel MPI 4.0.3 on Linux with PBS, you can use its mpirun exactly the same
way inside and outside of a PBS job.

The default process manager for Intel MPI 4.0.3 on Linux is Hydra.

5.2.6 Intel MPI 4.0.3 On Windows with PBS

On Windows PBS supplies a wrapper script for Intel MPI called pbs_intelmpi_mpirun.bat, located in $PBS_EXEC\bin.
You call this script instead of Intel mpirun. All options are passed through the script to mpirun.

5.2.6.1 Integrating Intel MPI 4.0.3 on the Fly

If you are using Intel MPI 4.0.3 but it has not been integrated with PBS, you can integrate it on the fly by setting environ-
ment variables:

1. Specify rsh:
I_MPI_HYDRA_BOOTSTRAP=rsh

2. Specify pbs_tmrsh.

a. If you are running your job entirely on hosts which have PBS_EXEC/bin in the default PATH, set this:

I_MPI_HYDRA_BOOTSTRAP_EXEC=pbs_tmrsh

b. If you are running your job entirely on hosts which do not have PBS_EXEC/bin in the default PATH, include
the full path in the environment variable. For example:

I_MPI_HYDRA_BOOTSTRAP_EXEC=/opt/pbs/default/bin/pbs_tmrsh

5.2.7 Intel MPI 2.0.022, 3, and 4 with PBS

PBS provides an interface to Intel MPI mpirun for these versions. If executed inside a PBS job, this allows PBS to
track all Intel MPI processes so that PBS can perform accounting and have complete job control. If executed outside of
a PBS job, it behaves exactly as if standard Intel MPI mpirun was used.

5.2.7.1 Using Intel MPI 2.0.022, 3, or 4 Integrated with PBS

You use the same mpirun command as you would use outside of PBS.

When submitting PBS jobs that invoke the PBS-supplied interface to mpirun for Intel MPI, be sure to explicitly specify
the actual number of ranks or MPI tasks in the qsub select specification. Otherwise, jobs will fail to run with "too
few entries in the machinefile".

For an example of this problem, specification of the following:

#PBS -l select=1:ncpus=1:host=hostA+1:ncpus=2:host=hostB

mpirun -np 3 /tmp/mytask

results in the following node file:

hostA

hostB

which conflicts with the "-np 3" specification in mpirun since only two MPD daemons are started.
PBS Professional 19.2.3 User’s Guide UG-85

Chapter 5 Multiprocessor Jobs
The correct way is to specify either of the following:

#PBS -l select=1:ncpus=1:host=hostA+2:ncpus=1:host=hostB

#PBS -l select=1:ncpus=1:host=hostA+1:ncpus=2:host=hostB:mpiprocs=2

which causes the node file to contain:

hostA

hostB

hostB

and is consistent with "mpirun -np 3".

5.2.7.2 Options to Integrated Intel MPI 2.0.022, 3, or 4

If executed inside a PBS job script, all of the options to the PBS interface are the same as for Intel MPI’s mpirun except
for the following:

-host, -ghost

For specifying the execution host to run on. Ignored.

-machinefile <file>

The file argument contents are ignored and replaced by the contents of $PBS_NODEFILE.

mpdboot option --totalnum=*

Ignored and replaced by the number of unique entries in $PBS_NODEFILE.

mpdboot option --file=*

Ignored and replaced by the name of $PBS_NODEFILE. The argument to this option is replaced by
$PBS_NODEFILE.

Argument to mpdboot option -f <mpd_hosts_file> replaced by $PBS_NODEFILE.

-s

If the PBS interface to Intel MPI’s mpirun is called inside a PBS job, Intel MPI’s mpirun -s argument to
mpdboot is not supported as this closely matches the mpirun option "-s <spec>". You can simply run a
separate mpdboot -s before calling mpirun. A warning message is issued by the PBS interface upon
encountering a -s option describing the supported form.

-np

If you do not specify a -np option, then no default value is provided by the PBS interface. It is up to the stan-
dard mpirun to decide what the reasonable default value should be, which is usually 1. The maximum num-
ber of ranks that can be launched is the number of entries in $PBS_NODEFILE.

5.2.7.3 MPD Startup and Shutdown

Intel MPI's mpirun takes care of starting and stopping the MPD daemons. The PBS interface to Intel MPI’s mpirun
always passes the arguments -totalnum=<number of mpds to start> and -file=<mpd_hosts_file>
to the actual mpirun, taking its input from unique entries in $PBS_NODEFILE.

5.2.7.4 Examples

Example 5-15: Run a single-executable Intel MPI job with six processes spread out across the PBS-allocated hosts listed
in $PBS_NODEFILE:
UG-86 PBS Professional 19.2.3 User’s Guide

Multiprocessor Jobs Chapter 5
Node file:

pbs-host1

pbs-host1

pbs-host2

pbs-host2

pbs-host3

pbs-host3

Job script:

mpirun takes care of starting the MPD

daemons on unique hosts listed in

$PBS_NODEFILE, and also runs the 6 processes

on the 6 hosts listed in

$PBS_NODEFILE; mpirun takes care of

shutting down MPDs.

mpirun /path/myprog.x 1200

Run job script:

qsub -l select=3:ncpus=2:mpiprocs=2 job.script

<job-id>

Example 5-16: Run an Intel MPI job with multiple executables on multiple hosts using $PBS_NODEFILE and
mpiexec arguments to mpirun:

$PBS_NODEFILE:

hostA

hostA

hostB

hostB

hostC

hostC

Job script:

mpirun runs MPD daemons on hosts listed in $PBS_NODEFILE

mpirun runs 2 instances of mpitest1

on hostA; 2 instances of mpitest2 on

hostB; 2 instances of mpitest3 on hostC.

mpirun takes care of shutting down the

MPDs at the end of MPI job run.

mpirun -np 2 /tmp/mpitest1 : -np 2 /tmp/mpitest2 : -np 2 /tmp/mpitest3
PBS Professional 19.2.3 User’s Guide UG-87

Chapter 5 Multiprocessor Jobs
Run job script:

qsub -l select=3:ncpus=2:mpiprocs=2 job.script

 <job-id>

Example 5-17: Run an Intel MPI job with multiple executables on multiple hosts via the -configfile option and
$PBS_NODEFILE:

$PBS_NODEFILE:

hostA

hostA

hostB

hostB

hostC

hostC

Job script:

echo “-np 2 /tmp/mpitest1” >> my_config_file

echo “-np 2 /tmp/mpitest2” >> my_config_file

echo “-np 2 /tmp/mpitest3” >> my_config_file

mpirun takes care of starting the MPD daemons

config file says run 2 instances of mpitest1

on hostA; 2 instances of mpitest2 on

hostB; 2 instances of mpitest3 on hostC.

mpirun takes care of shutting down the MPD daemons.

mpirun -configfile my_config_file

cleanup

rm -f my_config_file

Run job script:

qsub -l select=3:ncpus=2:mpiprocs=2 job.script

<job-id>

5.2.7.5 Restrictions

The maximum number of ranks that can be launched under integrated Intel MPI is the number of entries in
$PBS_NODEFILE.

5.2.8 LAM MPI with PBS

LAM MPI can be integrated with PBS on Linux so that PBS can track resource usage, signal processes, and perform
accounting, for all job processes. Your PBS administrator can integrate LAM MPI with PBS.

5.2.8.1 Using LAM 7.x with PBS

You can run jobs under PBS using LAM 7.x without making any changes to your mpirun call.
UG-88 PBS Professional 19.2.3 User’s Guide

Multiprocessor Jobs Chapter 5
5.2.8.2 Using LAM 6.5.9 with PBS

Support for LAM 6.5.9 is deprecated. You can run jobs under PBS using LAM 6.5.9.

5.2.8.2.i Caveats for LAM 6.5.9 with PBS

• If you specify the bhost argument, PBS will print a warning saying that the bhost argument is ignored by PBS.

• If you do not specify the where argument, pbs_mpilam will try to run the your program on all available CPUs
using the C keyword.

5.2.8.3 Example Job Submission Script

The following is a simple PBS job script for use with LAM MPI:

#!/bin/bash

Job Name

#PBS -N LamSubTest

Merge output and error files

#PBS -j oe

Select 2 nodes with 1 CPU each

#PBS -l select=2:ncpus=1

Export Users Environmental Variables to Execution Host

#PBS -V

Send email on abort, begin and end

#PBS -m abe

Specify mail recipient

#PBS -M username@example.com

cd $PBS_O_WORKDIR

date

lamboot -v $PBS_NODEFILE

mpirun -np $(cat $PBS_NODEFILE|wc -l) ./ANY_C_MPI_CODE HERE

date

When using the integrated lamboot in a job script, lamboot takes input from $PBS_NODEFILE automatically, so
the argument is not necessary.

5.2.9 MPICH-P4 with PBS

The wrapper is deprecated. MPICH-P4 can be integrated with PBS on Linux so that PBS can track resource usage, sig-
nal processes, and perform accounting, for all job processes. Your PBS administrator can integrate MPICH-P4 with PBS.

5.2.9.1 Options for MPICH-P4 with PBS

Under PBS, the syntax and arguments for the MPICH-P4 mpirun command on Linux are the same except for one
option, which you should not set:

-machinefile <file>

PBS supplies the machinefile. If you try to specify it, PBS prints a warning that it is replacing the machinefile.
PBS Professional 19.2.3 User’s Guide UG-89

Chapter 5 Multiprocessor Jobs
5.2.9.2 Example of Using MPICH-P4 with PBS

Example of using mpirun:

#PBS -l select=arch=linux

#

mpirun a.out

5.2.9.3 MPICH Under Windows

Under Windows, you may need to use the -localroot option to MPICH’s mpirun command in order to allow the
job’s processes to run more efficiently, or to get around the error "failed to communicate with the barrier
command". Here is an example job script:

C:\DOCUME~1\user1>type job.scr

echo begin

type %PBS_NODEFILE%

"\Program Files\MPICH\mpd\bin\mpirun" -localroot -np 2 -machinefile %PBS_NODEFILE%
\winnt\temp\netpipe -reps 3

echo done

5.2.9.3.i Caveats for MPICH Under Windows

Under Windows, MPICH is not integrated with PBS. Therefore, PBS is limited to tracking and controlling processes and
performing accounting only for job processes on the primary vnode.

5.2.10 MPICH-GM with PBS

5.2.10.1 Using MPICH-GM and MPD with PBS

The wrapper is deprecated. PBS provides an interface to MPICH-GM’s mpirun using MPD. If executed inside a
PBS job, this allows for PBS to track all MPICH-GM processes started by the MPD daemons so that PBS can perform
accounting and have complete job control. If executed outside of a PBS job, it behaves exactly as if standard mpirun
with MPD had been used.

You use the same mpirun command as you would use outside of PBS. If the MPD daemons are not already running,
the PBS interface will take care of starting them for you.

5.2.10.1.i Options

Inside a PBS job script, all of the options to the PBS interface are the same as mpirun with MPD except for the follow-
ing:

-m <file>

The file argument contents are ignored and replaced by the contents of $PBS_NODEFILE.

-np

If not specified, the number of entries found in $PBS_NODEFILE is used. The maximum number of ranks
that can be launched is the number of entries in $PBS_NODEFILE

-pg

The use of the -pg option, for having multiple executables on multiple hosts, is allowed but it is up to you to
make sure only PBS hosts are specified in the process group file; MPI processes spawned on non-PBS hosts are
not guaranteed to be under the control of PBS.
UG-90 PBS Professional 19.2.3 User’s Guide

Multiprocessor Jobs Chapter 5
5.2.10.1.ii MPD Startup and Shutdown

The script starts MPD daemons on each of the unique hosts listed in $PBS_NODEFILE, using either the rsh or ssh
method based on the value of the environment variable RSHCOMMAND. The default is rsh. The script also takes
care of shutting down the MPD daemons at the end of a run.

If the MPD daemons are not running, the PBS interface to mpirun will start GM's MPD daemons as you on the allo-
cated PBS hosts. The MPD daemons may have been started already by the administrator or by you. MPD daemons are
not started inside a PBS prologue script since it won't have the path of mpirun that you executed (GM or MX), which
would determine the path to the MPD binary.

5.2.10.1.iii Examples

Example 5-18: Run a single-executable MPICH-GM job with 3 processes spread out across the PBS-allocated hosts
listed in $PBS_NODEFILE:

$PBS_NODEFILE:

pbs-host1

pbs-host2

pbs-host3

qsub -l select=3:ncpus=1

[MPICH-GM-HOME]/bin/mpirun -np 3 /path/myprog.x 1200

^D

<job-id>

If the GM MPD daemons are not running, the PBS interface to mpirun will start them as you on the allocated PBS
hosts. The daemons may have been previously started by the administrator or by you.

Example 5-19: Run an MPICH-GM job with multiple executables on multiple hosts listed in the process group file
procgrp:

Job script:

qsub -l select=2:ncpus=1

echo "host1 1 user1 /x/y/a.exe arg1 arg2" > procgrp

echo "host2 1 user1 /x/x/b.exe arg1 arg2" >> procgrp

[MPICH-GM-HOME]/bin/mpirun -pg procgrp /path/mypro.x 1200

rm -f procgrp

^D

<job-id>

When the job runs, mpirun gives the warning message:

warning: “-pg” is allowed but it is up to user to make sure only PBS hosts are specified; MPI
processes spawned are not guaranteed to be under PBS-control.

The warning is issued because if any of the hosts listed in procgrp are not under the control of PBS, then the pro-
cesses on those hosts will not be under the control of PBS.

5.2.10.2 Using MPICH-GM and rsh/ssh with PBS

PBS provides an interface to MPICH-GM’s mpirun using rsh/ssh. If executed inside a PBS job, this lets PBS track
all MPICH-GM processes started via rsh/ssh so that PBS can perform accounting and have complete job control. If
executed outside of a PBS job, it behaves exactly as if standard mpirun had been used.

You use the same mpirun command as you would use outside of PBS.
PBS Professional 19.2.3 User’s Guide UG-91

Chapter 5 Multiprocessor Jobs
5.2.10.2.i Options

Inside a PBS job script, all of the options to the PBS interface are the same as mpirun except for the following:

-machinefile <file>

The file argument contents are ignored and replaced by the contents of $PBS_NODEFILE.

-np

If not specified, the number of entries found in $PBS_NODEFILE is used. The maximum number of ranks
that can be launched is the number of entries in $PBS_NODEFILE.

-pg

The use of the -pg option, for having multiple executables on multiple hosts, is allowed but it is up to you to
make sure only PBS hosts are specified in the process group file; MPI processes spawned on non-PBS hosts are
not guaranteed to be under the control of PBS.

5.2.10.2.ii Examples

Example 5-20: Run a single-executable MPICH-GM job with 64 processes spread out across the PBS-allocated hosts
listed in $PBS_NODEFILE:

$PBS_NODEFILE:

pbs-host1

pbs-host2

...

pbs-host64

qsub -l select=64:ncpus=1 -l place=scatter

mpirun -np 64 /path/myprog.x 1200

^D

<job-id>

Example 5-21: Run an MPICH-GM job with multiple executables on multiple hosts listed in the process group file
procgrp:

qsub -l select=2:ncpus=1

echo "host1 1 user1 /x/y/a.exe arg1 arg2" > procgrp

echo "host2 1 user1 /x/x/b.exe arg1 arg2" >> procgrp

mpirun -pg procgrp /path/mypro.x

rm -f procgrp

^D

<job-id>

When the job runs, mpirun gives this warning message:

warning: “-pg” is allowed but it is up to user to make sure only PBS hosts are specified; MPI
processes spawned are not guaranteed to be under the control of PBS.

The warning is issued because if any of the hosts listed in procgrp are not under the control of PBS, then the pro-
cesses on those hosts will not be under the control of PBS.

5.2.10.3 Restrictions

The maximum number of ranks that can be launched under integrated MPICH-GM is the number of entries in
$PBS_NODEFILE.
UG-92 PBS Professional 19.2.3 User’s Guide

Multiprocessor Jobs Chapter 5
5.2.11 MPICH-MX with PBS

5.2.11.1 Using MPICH-MX and MPD with PBS

The wrapper is deprecated. PBS provides an interface to MPICH-MX’s mpirun using MPD. If executed inside a PBS
job, this allows for PBS to track all MPICH-MX processes started by the MPD daemons so that PBS can perform
accounting and have complete job control. If executed outside of a PBS job, it behaves exactly as if standard MPICH-
MX mpirun with MPD was used.

You use the same mpirun command as you would use outside of PBS. If the MPD daemons are not already running,
the PBS interface will take care of starting them for you.

5.2.11.1.i Options

Inside a PBS job script, all of the options to the PBS interface are the same as mpirun with MPD except for the follow-
ing:

-m <file>

The file argument contents are ignored and replaced by the contents of $PBS_NODEFILE.

-np

If not specified, the number of entries found in $PBS_NODEFILE is used. The maximum number of ranks
that can be launched is the number of entries in $PBS_NODEFILE.

-pg

The use of the -pg option, for having multiple executables on multiple hosts, is allowed but it is up to you to
make sure only PBS hosts are specified in the process group file; MPI processes spawned on non-PBS hosts are
not guaranteed to be under the control of PBS.

5.2.11.1.ii MPD Startup and Shutdown

The PBS mpirun interface starts MPD daemons on each of the unique hosts listed in $PBS_NODEFILE, using either
the rsh or ssh method, based on value of environment variable RSHCOMMAND. The default is rsh. The interface
also takes care of shutting down the MPD daemons at the end of a run.

If the MPD daemons are not running, the PBS interface to mpirun starts MX's MPD daemons as you on the allocated
PBS hosts. The MPD daemons may already have been started by the administrator or by you. MPD daemons are not
started inside a PBS prologue script since it won't have the path of mpirun that you executed (GM or MX), which
would determine the path to the MPD binary.

5.2.11.1.iii Examples

Example 5-22: Run a single-executable MPICH-MX job with 64 processes spread out across the PBS-allocated hosts
listed in $PBS_NODEFILE:

$PBS_NODEFILE:

pbs-host1

pbs-host2

...

pbs-host64

qsub -l select=64:ncpus=1 -lplace=scatter

[MPICH-MX-HOME]/bin/mpirun -np 64 /path/myprog.x 1200

^D

<job-id>
PBS Professional 19.2.3 User’s Guide UG-93

Chapter 5 Multiprocessor Jobs
If the MPD daemons are not running, the PBS interface to mpirun starts MX's MPD daemons as you on the allo-
cated PBS hosts. The MPD daemons may be already started by the administrator or by you.

Example 5-23: Run an MPICH-MX job with multiple executables on multiple hosts listed in the process group file
procgrp:

qsub -l select=2:ncpus=1

echo "pbs-host1 1 username /x/y/a.exe arg1 arg2" > procgrp

echo "pbs-host2 1 username /x/x/b.exe arg1 arg2" >> procgrp

[MPICH-MX-HOME]/bin/mpirun -pg procgrp /path/myprog.x 1200

rm -f procgrp

^D

<job-id>

mpirun prints a warning message:

warning: “-pg” is allowed but it is up to user to make sure only PBS hosts are specified; MPI
processes spawned are not guaranteed to be under PBS-control

The warning is issued because if any of the hosts listed in procgrp are not under the control of PBS, then the pro-
cesses on those hosts will not be under the control of PBS.

5.2.11.2 Using MPICH-MX and rsh/ssh with PBS

Deprecated. PBS provides an interface to MPICH-MX’s mpirun using rsh/ssh. If executed inside a PBS job, this
allows for PBS to track all MPICH-MX processes started by rsh/ssh so that PBS can perform accounting and has com-
plete job control. If executed outside of a PBS job, it behaves exactly as if standard mpirun had been used.

You use the same mpirun command as you would use outside of PBS.

5.2.11.2.i Options

Inside a PBS job script, all of the options to the PBS interface are the same as standard mpirun except for the following:

-machinefile <file>

The file argument contents are ignored and replaced by the contents of $PBS_NODEFILE.

-np

If not specified, the number of entries found in the $PBS_NODEFILE is used. The maximum number of ranks
that can be launched is the number of entries in $PBS_NODEFILE.

-pg

The use of the -pg option, for having multiple executables on multiple hosts, is allowed but it is up to you to
make sure only PBS hosts are specified in the process group file; MPI processes spawned on non-PBS hosts are
not guaranteed to be under the control of PBS.

5.2.11.2.ii Examples

Example 5-24: Run a single-executable MPICH-MX job with 64 processes spread out across the PBS-allocated hosts
listed in $PBS_NODEFILE:
UG-94 PBS Professional 19.2.3 User’s Guide

Multiprocessor Jobs Chapter 5
$PBS_NODEFILE:

pbs-host1

pbs-host2

...

pbs-host64

qsub -l select=64:ncpus=1

mpirun -np 64 /path/myprog.x 1200

^D

<job-id>

Example 5-25: Run an MPICH-MX job with multiple executables on multiple hosts listed in the process group file
procgrp:

qsub -l select=2:ncpus=1

echo "pbs-host1 1 username /x/y/a.exe arg1 arg2" > procgrp

echo "pbs-host2 1 username /x/x/b.exe arg1 arg2" >> procgrp

mpirun -pg procgrp /path/myprog.x

rm -f procgrp

^D

<job-id>

mpirun prints the warning message:

warning: “-pg” is allowed but it is up to user to make sure only PBS hosts are specified; MPI
processes spawned are not guaranteed to be under PBS-control

The warning is issued because if any of the hosts listed in procgrp are not under the control of PBS, then the pro-
cesses on those hosts will not be under the control of PBS.

5.2.11.3 Restrictions

The maximum number of ranks that can be launched under integrated MPICH-MX is the number of entries in
$PBS_NODEFILE.

5.2.12 MPICH2 with PBS on Linux

On Linux, PBS provides an interface to MPICH2’s mpirun. If executed inside a PBS job, this allows for PBS to track
all MPICH2 processes so that PBS can perform accounting and have complete job control. If executed outside of a PBS
job, it behaves exactly as if standard MPICH2's mpirun had been used.

You use the same mpirun command as you would use outside of PBS.

When submitting PBS jobs under the PBS interface to MPICH2's mpirun, be sure to explicitly specify the actual num-
ber of ranks or MPI tasks in the qsub select specification. Otherwise, jobs will fail to run with "too few entries
in the machinefile".

For instance, the following erroneous specification:

#PBS -l select=1:ncpus=1:host=hostA+1:ncpus=2:host=hostB

mpirun -np 3 /tmp/mytask
PBS Professional 19.2.3 User’s Guide UG-95

Chapter 5 Multiprocessor Jobs
results in this $PBS_NODEFILE listing:

hostA

hostB

which conflicts with the "-np 3" specification in mpirun as only two MPD daemons are started.

The correct way is to specify either of the following:

#PBS -l select=1:ncpus=1:host=hostA+2:ncpus=1:host=hostB

#PBS -l select=1:ncpus=1:host=hostA+1:ncpus=2:host=hostB:mpiprocs=2

which causes $PBS_NODEFILE to contain:

hostA

hostB

hostB

and this is consistent with "mpirun -np 3".

5.2.12.1 Options

If executed inside a PBS job script, all of the options to the PBS interface are the same as MPICH2's mpirun except for
the following:

-host, -ghost

For specifying the execution host to run on. Ignored.

-machinefile <file>

The file argument contents are ignored and replaced by the contents of $PBS_NODEFILE.

-localonly <number of processes>

For specifying the number of processes to run locally. Not supported. You are advised instead to use the equiva-
lent arguments:

"-np <x> -localonly".

-np

If you do not specify a -np option, then no default value is provided by the PBS interface to MPICH2. It is up to
the standard mpirun to decide what the reasonable default value should be, which is usually 1. The maxi-
mum number of ranks that can be launched is the number of entries in $PBS_NODEFILE.

5.2.12.2 MPD Startup and Shutdown

The interface ensures that the MPD daemons are started on each of the hosts listed in $PBS_NODEFILE. It also ensures
that the MPD daemons are shut down at the end of MPI job execution.

5.2.12.3 Examples

Example 5-26: Run a single-executable MPICH2 job with six processes spread out across the PBS-allocated hosts listed
in $PBS_NODEFILE. Only three hosts are available:

$PBS_NODEFILE:

pbs-host1

pbs-host2

pbs-host3

pbs-host1

pbs-host2

pbs-host3
UG-96 PBS Professional 19.2.3 User’s Guide

Multiprocessor Jobs Chapter 5
Job.script:

mpirun runs 6 processes, scattered over 3 hosts

listed in $PBS_NODEFILE

mpirun -np 6 /path/myprog.x 1200

Run job script:

qsub -l select=6:ncpus=1 -lplace = scatter job.script

<job-id>

Example 5-27: Run an MPICH2 job with multiple executables on multiple hosts using $PBS_NODEFILE and
mpiexec arguments in mpirun:

$PBS_NODEFILE:

hostA

hostA

hostB

hostB

hostC

hostC

Job script:

#PBS -l select=3:ncpus=2:mpiprocs=2

mpirun -np 2 /tmp/mpitest1 : -np 2 /tmp/mpitest2 : -np 2 /tmp/mpitest3

Run job:

qsub job.script

Example 5-28: Run an MPICH2 job with multiple executables on multiple hosts using mpirun -configfile option
and $PBS_NODEFILE:

$PBS_NODEFILE:

hostA

hostA

hostB

hostB

hostC

hostC

Job script:

#PBS -l select=3:ncpus=2:mpiprocs=2

echo "-np 2 /tmp/mpitest1" > my_config_file

echo "-np 2 /tmp/mpitest2" >> my_config_file

echo "-np 2 /tmp/mpitest3" >> my_config_file

mpirun -configfile my_config_file

rm -f my_config_file
PBS Professional 19.2.3 User’s Guide UG-97

Chapter 5 Multiprocessor Jobs
Run job:

qsub job.script

5.2.12.4 Restrictions

The maximum number of ranks that can be launched under integrated MPICH2 is the number of entries in
$PBS_NODEFILE.

5.2.13 MPICH2 1.4.1p1 On Windows with PBS

On Windows PBS supplies a wrapper script for MPICH2 1.4.1p1 called pbs_mpich2_mpirun.bat, located in
$PBS_EXEC\bin. You call this script instead of MPICH2 mpirun. All options are passed through the script to mpirun.

5.2.14 MVAPICH with PBS

The wrapper is deprecated. PBS provides an mpirun interface to the MVAPICH mpirun. When you use the PBS-
supplied mpirun, PBS can track all MVAPICH processes, perform accounting, and have complete job control. Your
PBS administrator can integrate MVAPICH with PBS so that you can use the PBS-supplied mpirun in place of the
MVAPICH mpirun in your job scripts.

MVAPICH allows your jobs to use InfiniBand.

5.2.14.1 Interface to MVAPICH mpirun Command

If executed outside of a PBS job, the PBS-supplied interface to mpirun behaves exactly as if standard MVAPICH
mpirun had been used.

If executed inside a PBS job script, all of the options to the PBS interface are the same as MVAPICH's mpirun except
for the following:

-map

The map option is ignored.

-machinefile <file>

The machinefile option is ignored.

-exclude

The exclude option is ignored.

-np

If you do not specify a -np option, then PBS uses the number of entries found in $PBS_NODEFILE. The
maximum number of ranks that can be launched is the number of entries in $PBS_NODEFILE.

5.2.14.2 Examples

Example 5-29: Run a single-executable MVAPICH job with six ranks spread out across the PBS-allocated hosts listed in
$PBS_NODEFILE:
UG-98 PBS Professional 19.2.3 User’s Guide

Multiprocessor Jobs Chapter 5
$PBS_NODEFILE:

pbs-host1

pbs-host1

pbs-host2

pbs-host2

pbs-host3

pbs-host3

Contents of job.script:

mpirun runs 6 processes mapped one to each line in $PBS_NODEFILE

mpirun -np 6 /path/myprog

Run job script:

qsub -l select=3:ncpus=2:mpiprocs=2 job.script

<job-id>

5.2.14.3 Restrictions

The maximum number of ranks that can be launched under integrated MVAPICH is the number of entries in
$PBS_NODEFILE.

5.2.15 MVAPICH2 with PBS

PBS provides an mpiexec interface to MVAPICH2’s mpiexec. When you use the PBS-supplied mpiexec, PBS can
track all MVAPICH2 processes, perform accounting, and have complete job control. Your PBS administrator can inte-
grate MVAPICH2 with PBS so that you can use the PBS-supplied mpirun in place of the MVAPICH2 mpirun in your
job scripts.

MVAPICH2 allows your jobs to use InfiniBand.

5.2.15.1 Interface to MVAPICH2 mpiexec Command

If executed outside of a PBS job, it behaves exactly as if standard MVAPICH2's mpiexec had been used.

If executed inside a PBS job script, all of the options to the PBS interface are the same as MVAPICH2's mpiexec
except for the following:

-host

The host option is ignored.

-machinefile <file>

The file option is ignored.

-mpdboot

If mpdboot is not called before mpiexec, it is called automatically before mpiexec runs so that an MPD
daemon is started on each host assigned by PBS.

5.2.15.2 MPD Startup and Shutdown

The interface ensures that the MPD daemons are started on each of the hosts listed in $PBS_NODEFILE. It also ensures
that the MPD daemons are shut down at the end of MPI job execution.
PBS Professional 19.2.3 User’s Guide UG-99

Chapter 5 Multiprocessor Jobs
5.2.15.3 Examples

Example 5-30: Run a single-executable MVAPICH2 job with six ranks on hosts listed in $PBS_NODEFILE:

$PBS_NODEFILE:

pbs-host1

pbs-host1

pbs-host2

pbs-host2

pbs-host3

pbs-host3

Job.script:

mpiexec -np 6 /path/mpiprog

Run job script:

qsub -l select=3:ncpus=2:mpiprocs=2 job.script

<job-id>

Example 5-31: Launch an MVAPICH2 MPI job with multiple executables on multiple hosts listed in the default file
"mpd.hosts". Here, run executables prog1 and prog2 with two ranks of prog1 on host1, two ranks of prog2 on
host2 and two ranks of prog2 on host3, all specified on the command line:

$PBS_NODEFILE:

pbs-host1

pbs-host1

pbs-host2

pbs-host2

pbs-host3

pbs-host3

Job.script:

mpiexec -n 2 prog1 : -n 2 prog2 : -n 2 prog2

Run job script:

qsub -l select=3:ncpus=2:mpiprocs=2 job.script

<job-id>

Example 5-32: Launch an MVAPICH2 MPI job with multiple executables on multiple hosts listed in the default file
"mpd.hosts". Run executables prog1 and prog2 with two ranks of prog1 on host1, two ranks of prog2 on host2
and two ranks of prog2 on host3, all specified using the -configfile option:
UG-100 PBS Professional 19.2.3 User’s Guide

Multiprocessor Jobs Chapter 5
$PBS_NODEFILE:

pbs-host1

pbs-host1

pbs-host2

pbs-host2

pbs-host3

pbs-host3

Job.script:

echo "-n 2 -host host1 prog1" > /tmp/jobconf

echo "-n 2 -host host2 prog2" >> /tmp/jobconf

echo "-n 2 -host host3 prog2" >> /tmp/jobconf

mpiexec -configfile /tmp/jobconf

rm /tmp/jobconf

Run job script:

qsub -l select=3:ncpus=2:mpiprocs=2 job.script

<job-id>

5.2.15.4 Restrictions

The maximum number of ranks that can be launched under MVAPICH2 is the number of entries in $PBS_NODEFILE.

5.2.16 Open MPI with PBS

Open MPI can be integrated with PBS on Linux so that PBS can track resource usage, signal processes, and perform
accounting, for all job processes. Your PBS administrator can integrate Open MPI with PBS.

5.2.16.1 Using Open MPI with PBS

You can run jobs under PBS using Open MPI without making any changes to your MPI command line.

5.2.17 Platform MPI with PBS

Platform MPI can be integrated with PBS on Linux so that PBS can track resource usage, signal processes, and perform
accounting, for all job processes. Your PBS administrator can integrate Platform MPI with PBS.

5.2.17.1 Using Platform MPI with PBS

You can run jobs under PBS using Platform MPI without making any changes to your MPI command line.

5.2.17.2 Setting up Your Environment

In order to override the default rsh, set PBS_RSHCOMMAND in your job script:

export PBS_RSHCOMMAND=<rsh command>
PBS Professional 19.2.3 User’s Guide UG-101

Chapter 5 Multiprocessor Jobs
5.2.18 HPE MPI with PBS

PBS supplies its own mpiexec to use with HPE MPI on a multi-vnode machine running supported versions of HPE
MPI. When you use the PBS-supplied mpiexec, PBS can track resource usage, signal processes, and perform account-
ing, for all job processes. The PBS mpiexec provides the standard mpiexec interface.

See your PBS administrator to find out whether your system is configured for the PBS mpiexec.

5.2.18.1 Using HPE MPI with PBS

You can launch an MPI job on a single HPE SGI system, or across multiple HPE SGI systems. For MPI jobs across mul-
tiple HPE SGI systems, PBS will manage the multi-host jobs. For example, if you have two HPE SGI systems named
host1 and host2, and want to run two applications called mympi1 and mympi2 on them, you can put this in your job
script:

mpiexec -host host1 -n 4 mympi1 : -host host2 -n 8 mympi2

PBS will manage and track the job’s processes. When the job is finished, PBS will clean up after it.

You can run MPI jobs in the placement sets chosen by PBS.

5.2.18.2 Prerequisites

In order to use MPI within a PBS job with HPE MPI, you may need to add the following in your job script before you
call MPI:

module load mpt

5.2.18.3 Using Cpusets

PBS will run the MPI tasks in the cpusets it manages.

Jobs will share cpusets if the jobs request sharing and the vnodes’ sharing attribute is not set to force_excl. Jobs can
share the memory on a nodeboard if they have a CPU from that nodeboard. To fit as many small jobs as possible onto
vnodes that already have shared jobs on them, request sharing in the job resource requests.

The alt_id job attribute has the form cpuset=<name>, where <name> is the name of the cpuset, which is the
$PBS_JOBID.

To verify how many CPUs are included in a cpuset created by PBS, use:

> $ cpuset -d <set name> | egrep cpus

This will work either inside or outside a job.

For details on shared versus exclusive use of vnodes, see section 4.7.1.2, “Specifying Shared or Exclusive Use of
Vnodes”, on page 66, and for a description of how the vnode sharing attribute interacts with a job’s resource request, see
“sharing” on page 315 of the PBS Professional Reference Guide.

5.2.18.4 Fitting Jobs onto Nodeboards

PBS will try to put a job that fits in a single nodeboard on just one nodeboard. However, if the only CPUs available are
on separate nodeboards, and those vnodes are not allocated exclusively to existing jobs, and the job can share a vnode,
then the job is run on the separate nodeboards.

5.2.18.5 Checkpointing and Suspending Jobs

Jobs are suspended on the HPE SGI systems using the PBS suspend feature. If a job is suspended, its processes are
moved to the global cpuset. When the job is restarted, they are restored.
UG-102 PBS Professional 19.2.3 User’s Guide

Multiprocessor Jobs Chapter 5
Jobs are checkpointed on HPE SGI systems using application-level checkpointing. There is no OS-level checkpoint.

Suspended or checkpointed jobs will resume on the original nodeboards.

5.2.18.6 Specifying Array Name

You can specify the name of the array to use via the PBS_MPI_SGIARRAY environment variable.

5.2.18.7 Using CSA

PBS support for CSA on HPE SGI systems is no longer available. The CSA functionality for HPE SGI systems has been
removed from PBS.

5.3 Using PVM with PBS

You use the pvmexec command to execute a Parallel Virtual Machine (PVM) program. PVM is not integrated with
PBS; PBS is limited to monitoring, controlling, and accounting for job processes only on the primary vnode.

5.3.1 Arguments to pvmexec Command

The pvmexec command expects a hostfile argument for the list of hosts on which to spawn the parallel job.

5.3.2 Using PVM Daemons

To start the PVM daemons on the hosts listed in $PBS_NODEFILE:

1. Start the PVM console on the first host in the list

2. Print the hosts to the standard output file named jobname.o<PBS job ID>:

echo conf | pvm $PBS_NODEFILE

To quit the PVM console but leave the PVM daemons running:

quit

To stop the PVM daemons, restart the PVM console, and quit:

echo halt | pvm

5.3.3 Submitting a PVM Job

To submit a PVM job to PBS, use the following:

qsub <job script>

5.3.4 Examples

Example 5-33: To submit a PVM job to PBS, use the following:

qsub your_pvm_job
PBS Professional 19.2.3 User’s Guide UG-103

Chapter 5 Multiprocessor Jobs
Here is an example script for your_pvm_job:

#PBS -N pvmjob

#PBS -V

cd $PBS_O_WORKDIR

echo conf | pvm $PBS_NODEFILE

echo quit | pvm

./my_pvm_program

echo halt | pvm

Example 5-34: Sample PBS script for a PVM job:

#PBS -N pvmjob

#

pvmexec a.out -inputfile data_in

5.4 Using OpenMP with PBS

PBS Professional supports OpenMP applications by setting the OMP_NUM_THREADS variable in the job’s environ-
ment, based on the resource request of the job. The OpenMP run-time picks up the value of OMP_NUM_THREADS
and creates threads appropriately.

MoM sets the value of OMP_NUM_THREADS based on the first chunk of the select statement. If you request
ompthreads in the first chunk, MoM sets the environment variable to the value of ompthreads. If you do not request
ompthreads in the first chunk, then OMP_NUM_THREADS is set to the value of the ncpus resource of that chunk. If
you do not request either ncpus or ompthreads for the first chunk of the select statement, then
OMP_NUM_THREADS is set to 1.

You cannot directly set the value of the OMP_NUM_THREADS environment variable; MoM will override any setting
you attempt.

See “Resources Built Into PBS” on page 258 of the PBS Professional Reference Guide for a definition of the
ompthreads resource.

Example 5-35: Submit an OpenMP job as a single chunk, for a two-CPU, two-thread job requiring 10gb of memory:

qsub -l select=1:ncpus=2:mem=10gb

Example 5-36: Run an MPI application with 64 MPI processes, and one thread per process:

#PBS -l select=64:ncpus=1

mpiexec -n 64 ./a.out

Example 5-37: Run an MPI application with 64 MPI processes, and four OpenMP threads per process:

#PBS -l select=64:ncpus=4

mpiexec -n 64 omplace -nt 4 ./a.out

or

#PBS -l select=64:ncpus=4:ompthreads=4

mpiexec -n 64 omplace -nt 4 ./a.out
UG-104 PBS Professional 19.2.3 User’s Guide

Multiprocessor Jobs Chapter 5
5.4.1 Running Fewer Threads than CPUs

You might be running an OpenMP application on a host and wish to run fewer threads than the number of CPUs
requested. This might be because the threads need exclusive access to shared resources in a multi-core processor system,
such as to a cache shared between cores, or to the memory shared between cores.

Example 5-38: You want one chunk, with 16 CPUs and eight threads:

qsub -l select=1:ncpus=16:ompthreads=8

5.4.2 Running More Threads than CPUs

You might be running an OpenMP application on a host and wish to run more threads than the number of CPUs
requested, perhaps because each thread is I/O bound.

Example 5-39: You want one chunk, with eight CPUs and 16 threads:

qsub -l select=1:ncpus=8:ompthreads=16

5.4.3 Caveats for Using OpenMP with PBS

Make sure that you request the correct number of MPI ranks for your job, so that the PBS node file contains the correct
number of entries. See section 5.1.3, “Specifying Number of MPI Processes Per Chunk”, on page 78.

5.5 Hybrid MPI-OpenMP Jobs

For jobs that are both MPI and multi-threaded, the number of threads per chunk, for all chunks, is set to the number of
threads requested (explicitly or implicitly) in the first chunk, except for MPIs that have been integrated with the PBS TM
API.

For MPIs that are integrated with the PBS TM interface, (LAM MPI and Open MPI), you can specify the number of
threads separately for each chunk, by specifying the ompthreads resource separately for each chunk.

For most MPIs, the OMP_NUM_THREADS and NCPUS environment variables default to the number of ncpus
requested for the first chunk.

Should you have a job that is both MPI and multi-threaded, you can request one chunk for each MPI process, or set
mpiprocs to the number of MPI processes you want on each chunk. See section 5.1.3, “Specifying Number of MPI Pro-
cesses Per Chunk”, on page 78.

5.5.1 Examples

Example 5-40: To request four chunks, each with one MPI process, two CPUs and two threads:

qsub -l select=4:ncpus=2
PBS Professional 19.2.3 User’s Guide UG-105

Chapter 5 Multiprocessor Jobs
or

qsub -l select=4:ncpus=2:ompthreads=2

Example 5-41: To request four chunks, each with two CPUs and four threads:

qsub -l select=4:ncpus=2:ompthreads=4

Example 5-42: To request 16 MPI processes each with two threads on machines with two processors:

qsub -l select=16:ncpus=2

Example 5-43: To request two chunks, each with eight CPUs and eight MPI tasks and four threads:

qsub -l select=2:ncpus=8:mpiprocs=8:ompthreads=4

Example 5-44: For the following:

qsub -l select=4:ncpus=2

This request is satisfied by four CPUs from VnodeA, two from VnodeB and two from VnodeC, so the following is
written to $PBS_NODEFILE:

VnodeA

VnodeA

VnodeB

VnodeC

The OpenMP environment variables are set, for the four PBS tasks corresponding to the four MPI processes, as fol-
lows:

• For PBS task #1 on VnodeA: OMP_NUM_THREADS=2 NCPUS=2

• For PBS task #2 on VnodeA: OMP_NUM_THREADS=2 NCPUS=2

• For PBS task #3 on VnodeB: OMP_NUM_THREADS=2 NCPUS=2

• For PBS task #4 on VnodeC: OMP_NUM_THREADS=2 NCPUS=2

Example 5-45: For the following:

qsub -l select=3:ncpus=2:mpiprocs=2:ompthreads=1

This is satisfied by two CPUs from each of three vnodes (VnodeA, VnodeB, and VnodeC), so the following is writ-
ten to $PBS_NODEFILE:

VnodeA

VnodeA

VnodeB

VnodeB

VnodeC

VnodeC

The OpenMP environment variables are set, for the six PBS tasks corresponding to the six MPI processes, as follows:

• For PBS task #1 on VnodeA: OMP_NUM_THREADS=1 NCPUS=1

• For PBS task #2 on VnodeA: OMP_NUM_THREADS=1 NCPUS=1

• For PBS task #3 on VnodeB: OMP_NUM_THREADS=1 NCPUS=1

• For PBS task #4 on VnodeB: OMP_NUM_THREADS=1 NCPUS=1

• For PBS task #5 on VnodeC: OMP_NUM_THREADS=1 NCPUS=1

• For PBS task #6 on VnodeC: OMP_NUM_THREADS=1 NCPUS=1

Example 5-46: To run two threads on each of N chunks, each running a process, all on the same HPE SGI system:

qsub -l select=N:ncpus=2 -l place=pack
UG-106 PBS Professional 19.2.3 User’s Guide

Multiprocessor Jobs Chapter 5
This starts N processes on a single host, with two OpenMP threads per process, because
OMP_NUM_THREADS=2.
PBS Professional 19.2.3 User’s Guide UG-107

Chapter 5 Multiprocessor Jobs
UG-108 PBS Professional 19.2.3 User’s Guide

6

Controlling How Your Job Runs

6.1 Using Job Exit Status

PBS can use the exit status of your job as input to the epilogue, and to determine whether to run a dependent job. If you
are running under Linux, make sure that your job’s exit status is captured correctly; see section 1.4.2.4, “Capture Correct
Job Exit Status”, on page 6.

Job exit codes are listed in section 13.9, "Job Exit Status Codes", on page 515 of the PBS Professional Administrator’s
Guide.

The exit status of a job array is determined by the status of each of its completed subjobs, and is only available when all
valid subjobs have completed. The individual exit status of a completed subjob is passed to the epilogue, and is available
in the ‘E’ accounting log record of that subjob. See “Job Array Exit Status” on page 154.

6.1.1 Caveats for Exit Status

• Normally, qsub exits with the exit status for a blocking job, but if you submit a job that is both blocking and inter-
active, PBS does not return the job’s exit status. See section 6.10, “Making qsub Wait Until Job Ends”, on page 122.

• For a blocking job, the exit status is returned before staging finishes. See section 6.10.2, “Caveats for Blocking
Jobs”, on page 123.

• The exit status of an interactive job is always recorded as 0 (zero), regardless of the actual exit status.

6.2 Using Job Dependencies

PBS allows you to specify dependencies between two or more jobs. Dependencies are useful for a variety of tasks, such
as:

• Specifying the order in which jobs in a set should execute

• Requesting a job run only if an error occurs in another job

• Holding jobs until a particular job starts or completes execution

There is no limit on the number of dependencies per job.

6.2.1 Syntax for Job Dependencies

Use the “-W depend=<dependency list>” option to qsub to define dependencies between jobs. The depen-
dency list has the format:

<type>:<arg list>[,<type>:<arg list> ...]

where except for the on type, the arg list is one or more PBS job IDs in the form:

<job ID>[:<job ID> ...]

These are the available dependency types:
PBS Professional 19.2.3 User’s Guide UG-109

Chapter 6 Controlling How Your Job Runs
after:<arg list>

This job may start only after all jobs in arg list have started execution.

afterok:<arg list>

This job may start only after all jobs in arg list have terminated with no errors.

afternotok:<arg list>

This job may start only after all jobs in arg list have terminated with errors.

afterany:<arg list>

This job may start after all jobs in arg list have finished execution, with or without errors. This job will not run
if a job in the arg list was deleted without ever having been run.

before:<arg list>

Jobs in arg list may start only after specified jobs have begun execution. You must submit jobs that will run
before other jobs with a type of on.

beforeok:<arg list>

Jobs in arg list may start only after this job terminates without errors.

beforenotok:<arg list>

If this job terminates execution with errors, the jobs in arg list may begin.

beforeany:<arg list>

Jobs in arg list may start only after specified jobs terminate execution, with or without errors. Requires use of
on dependency for jobs that will run before other jobs.

on:count

This job may start only after count dependencies on other jobs have been satisfied. This type is used in conjunc-
tion with one of the before types. count is an integer greater than 0.

The depend job attribute controls job dependencies. You can set it using the qsub command line or a PBS directive:

qsub -W depend=...

#PBS depend=...
UG-110 PBS Professional 19.2.3 User’s Guide

Controlling How Your Job Runs Chapter 6
6.2.2 Job Dependency Examples

Example 6-1: You have three jobs, job1, job2, and job3, and you want job3 to start after job1 and job2 have ended:

qsub job1

16394.jupiter

qsub job2

16395.jupiter

qsub -W depend=afterany:16394:16395 job3

16396.jupiter

Example 6-2: You want job2 to start only if job1 ends with no errors:

qsub job1

16397.jupiter

qsub -W depend=afterok:16397 job2

16396.jupiter

Example 6-3: job1 should run before job2 and job3. To use the beforeany dependency, you must use the on depen-
dency:

qsub -W depend=on:2 job1

16397.jupiter

qsub -W depend=beforeany:16397 job2

16398.jupiter

qsub -W depend=beforeany:16397 job3

16399.jupiter

6.2.3 Job Array Dependencies

Job dependencies are supported:

• Between jobs and jobs

• Between job arrays and job arrays

• Between job arrays and jobs

• Between jobs and job arrays

Job dependencies are not supported for subjobs or ranges of subjobs.

6.2.4 Caveats and Advice for Job Dependencies

6.2.4.1 Correct Exit Status Required

Under Linux, make sure that job exit status is captured correctly; see section 6.1, “Using Job Exit Status”, on page 109.

6.2.4.2 Permission Required for Dependencies

To use the before types, you must have permission to alter the jobs in arg list. Otherwise, the dependency is rejected and
the new job is aborted.
PBS Professional 19.2.3 User’s Guide UG-111

Chapter 6 Controlling How Your Job Runs
6.2.4.3 Warning About Job History

Enabling job history changes the behavior of dependent jobs. If a job j1 depends on a finished job j2 for which PBS is
maintaining history, PBS puts j1 into the held state. If job j1 depends on a finished job j3 that has been purged from the
historical records, PBS rejects j1 as if the job no longer exists.

6.2.4.4 Error Reporting

PBS checks for errors in the existence, state, or condition of the job after accepting the job. If there is an error, PBS sends
you mail about the error and deletes the job.

6.3 Adjusting Job Running Time

This feature was added in PBS Professional 12.0.

6.3.1 Shrink-to-fit Jobs

PBS allows you to submit a job whose running time can be adjusted to fit into an available scheduling slot. The job’s
minimum and maximum running time are specified in the min_walltime and max_walltime resources. PBS chooses the
actual walltime. Any job that requests min_walltime is a shrink-to-fit job.

6.3.1.1 Requirements for a Shrink-to-fit Job

A job must have a value for min_walltime to be a shrink-to-fit job. Shrink-to-fit jobs are not required to request
max_walltime, but it is an error to request max_walltime and not min_walltime.

Jobs that do not have values for min_walltime are not shrink-to-fit jobs, and you can specify their walltime.

6.3.1.2 Comparison Between Shrink-to-fit and Non-shrink-to-fit Jobs

The only difference between a shrink-to-fit and a non-shrink-to-fit job is how the job’s walltime is treated. PBS sets the
walltime when it runs the job. Any walltime value that exists before the job runs is ignored.

6.3.2 Using Shrink-to-fit Jobs

If you have jobs that can run for less than the expected time needed and still make useful progress, you can make them
shrink-to-fit jobs in order to maximize utilization.

You can use shrink-to-fit jobs for the following:

• Jobs that are internally checkpointed. This includes jobs which are part of a larger effort, where a job does as much
work as it can before it is killed, and the next job in that effort takes up where the previous job left off.

• Jobs using periodic PBS checkpointing

• Jobs whose real running time might be much less than the expected time

• When you have dedicated time for system maintenance, and you want to take advantage of time slots right up until
shutdown, you can run speculative shrink-to-fit jobs if you can risk having a job killed before it finishes. Similarly,
speculative jobs can take advantage of the time just before a reservation starts

• Any job where you do not mind running the job as a speculative attempt to finish some work
UG-112 PBS Professional 19.2.3 User’s Guide

Controlling How Your Job Runs Chapter 6
6.3.3 Running Time of a Shrink-to-fit Job

6.3.3.1 Setting Running Time Range for Shrink-to-fit Jobs

It is only required that the job request min_walltime to be a shrink-to-fit job. Requesting max_walltime without
requesting min_walltime is an error.

You can set the job’s running time range by requesting min_walltime and max_walltime, for example:

qsub -l min_walltime=<min walltime>, max_walltime=<max walltime> <job script>

6.3.3.2 Setting walltime for Shrink-to-fit Jobs

For a shrink-to-fit job, PBS sets the walltime resource based on the values of min_walltime and max_walltime, regard-
less of whether walltime is specified for the job.

PBS examines each shrink-to-fit job when it gets to it, and looks for a time slot whose length is between the job’s
min_walltime and max_walltime. If the job can fit somewhere, PBS sets the job’s walltime to a duration that fits the
time slot, and runs the job. The chosen value for walltime is visible in the job’s Resource_List.walltime attribute. Any
existing walltime value, regardless of where it comes from, e.g. previous execution, is reset to the new calculated run-
ning time.

If a shrink-to-fit job is run more than once, PBS recalculates the job’s running time to fit an available time slot that is
between min_walltime and max_walltime, and resets the job’s walltime, each time the job is run.

For a multi-vnode job, PBS chooses a walltime that works for all of the chunks required by the job, and places job
chunks according to the placement specification.

6.3.4 Modifying Shrink-to-fit and Non-shrink-to-fit Jobs

6.3.4.1 Modifying min_walltime and max_walltime

You can change min_walltime and/or max_walltime for a shrink-to-fit job by using the qalter command. Any
changes take effect after the current scheduling cycle. Changes affect only queued jobs; running jobs are unaffected
unless they are rerun.

6.3.4.1.i Making Non-shrink-to-fit Jobs into Shrink-to-fit Jobs

You can convert a normal non-shrink-to-fit job into a shrink-to-fit job using the qalter command to set values for
min_walltime and max_walltime.

Any changes take effect after the current scheduling cycle. Changes affect only queued jobs; running jobs are unaffected
unless they are rerun.

6.3.4.1.ii Making Shrink-to-fit Jobs into Non-shrink-to-fit Jobs

To make a shrink-to-fit job into a normal, non-shrink-to-fit job, use the qalter command to do the following:

• Set the job’s walltime to the value for max_walltime

• Unset min_walltime

• Unset max_walltime
PBS Professional 19.2.3 User’s Guide UG-113

Chapter 6 Controlling How Your Job Runs
6.3.5 Viewing Running Time for a Job

6.3.5.1 Viewing min_walltime and max_walltime

You can use qstat -f to view the values of min_walltime and max_walltime. For example:

% qsub -lmin_walltime=01:00:15, max_walltime=03:30:00 job.sh

<job-id>

% qstat -f <job-id>

...

Resource_List.min_walltime=01:00:15

Resource_List.max_walltime=03:30:00

You can use tracejob to display max_walltime and min_walltime as part of the job's resource list. For example:

12/16/2011 14:28:55 A user=pbsadmin group=Users project=_pbs_project_default

…

Resource_List.max_walltime=10:00:00

Resource_List.min_walltime=00:00:10

6.3.5.2 Viewing walltime for a Shrink-to-fit Job

PBS sets a job’s walltime only when the job runs. While the job is running, you can see its walltime via qstat -f.
While the job is not running, you cannot see its real walltime; it may have a value set for walltime, but this value is
ignored.

You can see the walltime value for a finished shrink-to-fit job if you are preserving job history. See section 13.15, “Man-
aging Job History”, on page 526.

6.3.6 Lifecycle of a Shrink-to-fit Job

6.3.6.1 Execution of Shrink-to-fit Jobs

Shrink-to-fit jobs are started just like non-shrink-to-fit jobs.

6.3.6.2 Termination of Shrink-to-fit Jobs

When a shrink-to-fit job exceeds the walltime PBS has set for it, it is killed by PBS exactly as a non-shrink-to-fit job is
killed when it exceeds its walltime.

6.3.7 The min_walltime and max_walltime Resources

max_walltime

Maximum walltime allowed for a shrink-to-fit job. Job’s actual walltime is between max_walltime and
min_walltime. PBS sets walltime for a shrink-to-fit job. If this resource is specified, min_walltime must also
be specified. Must be greater than or equal to min_walltime. Cannot be used for resources_min or
resources_max. Cannot be set on job arrays or reservations. If not specified, PBS uses 5 years as the maxi-
mum time slot. Can be requested only outside of a select statement. Non-consumable. Default: None. Type:
duration. Python type: pbs.duration
UG-114 PBS Professional 19.2.3 User’s Guide

Controlling How Your Job Runs Chapter 6
min_walltime

Minimum walltime allowed for a shrink-to-fit job. When this resource is specified, job is a shrink-to-fit job. If
this attribute is set, PBS sets the job’s walltime. Job’s actual walltime is between max_walltime and
min_walltime. Must be less than or equal to max_walltime. Cannot be used for resources_min or
resources_max. Cannot be set on job arrays or reservations. Can be requested only outside of a select state-
ment. Non-consumable. Default: None. Type: duration. Python type: pbs.duration

6.3.8 Caveats and Restrictions for Shrink-to-fit Jobs

It is erroneous to specify max_walltime for a job without specifying min_walltime. If attempted via qsub or
qalter, the following error is printed:

'Can not have “max_walltime” without “min_walltime”'

It is erroneous to specify a min_walltime that is greater than max_walltime. If attempted via qsub or qalter, the fol-
lowing error is printed:

'“min_walltime” can not be greater than “max_walltime”'

Job arrays cannot be shrink-to-fit. You cannot have a shrink-to-fit job array. It is erroneous to specify a min_walltime or
max_walltime for a job array. If attempted via qsub or qalter, the following error is printed:

'”min_walltime” and “max_walltime” are not valid resources for a job array'

Reservations cannot be shrink-to-fit. You cannot have a shrink-to-fit reservation. It is erroneous to set min_walltime or
max_walltime for a reservation. If attempted via pbs_rsub, the following error is printed:

'”min_walltime” and “max_walltime” are not valid resources for reservation.'

It is erroneous to set resources_max or resources_min for min_walltime and max_walltime. If attempted, the fol-
lowing error message is displayed, whichever is appropriate:

“Resource limits can not be set for min_walltime”

“Resource limits can not be set for max_walltime”

6.4 Using Checkpointing

6.4.1 Prerequisites for Checkpointing

A job is checkpointable if it has not been marked as non-checkpointable and any of the following is true:

• Its application supports checkpointing and your administrator has set up checkpoint scripts

• There is a third-party checkpointing application available

• The OS supports checkpointing

6.4.2 Minimum Checkpoint Interval

The execution queue in which the job resides controls the minimum interval at which a job can be checkpointed. The
interval is specified in CPU minutes or walltime minutes. The same value is used for both, so for example if the mini-
mum interval is specified as 12, then a job using the queue’s interval for CPU time is checkpointed every 12 minutes of
CPU time, and a job using the queue’s interval for walltime is checkpointed every 12 minutes of walltime.
PBS Professional 19.2.3 User’s Guide UG-115

Chapter 6 Controlling How Your Job Runs
6.4.3 Syntax for Specifying Checkpoint Interval

Use the “-c checkpoint-spec” option to qsub to specify the interval, in CPU minutes, or in walltime minutes, at
which the job will be checkpointed.

The checkpoint-spec argument is specified as:

c

Job is checkpointed at the interval, measured in CPU time, set on the execution queue in which the job resides.

c=<minutes of CPU time>

Job is checkpointed at intervals of the specified number of minutes of CPU time used by the job. This value
must be greater than zero. If the interval specified is less than that set on the execution queue in which the job
resides, the queue’s interval is used.

Format: Integer

w

Job is checkpointed at the interval, measured in walltime, set on the execution queue in which the job resides.

w=<minutes of walltime>

Checkpointing is to be performed at intervals of the specified number of minutes of walltime used by the job.
This value must be greater than zero. If the interval specified is less than that set on the execution queue in
which the job resides, the queue’s interval is used.

Format: Integer

n

Job is not checkpointed.

s

Job is checkpointed only when the PBS server is shut down.

u

Checkpointing is unspecified, and defaults to the same behavior as “s”.

The Checkpoint job attribute controls the job’s checkpoint interval. You can set it using the qsub command line or a
PBS directive:

Use qsub to specify that the job should use the execution queue’s checkpoint interval:

qsub -c c my_job

Use a directive to checkpoint the job every 10 minutes of CPU time:

#PBS -c c=10

6.4.4 Using Checkpointing for Preempting or Holding Jobs

Your site may need to preempt jobs while they are running, or you may want to be able to place a hold your job while it
runs. To allow either of these, make your job checkpointable. This means that you should not mark it as non-checkpoint-
able (do not use qsub -c n), your application must be checkpointable or there is a third-party checkpointing applica-
tion, and your administrator must supply a checkpoint script to be run by the MoM where the job runs.

You can use application-level checkpointing when your job is preempted or you place a hold on it to save the partial
results. When your checkpointed job is restarted, your job script can find that the job was checkpointed, and can start
from the checkpoint file instead of starting from scratch.

If you try to hold a running job that is not checkpointable (either it is marked as non-checkpointable or the script is miss-
ing or returns failure), the job continues to run with its Hold_Types attribute set to h. See section 6.5, “Holding and
Releasing Jobs”, on page 117.
UG-116 PBS Professional 19.2.3 User’s Guide

Controlling How Your Job Runs Chapter 6
6.4.5 Caveats and Restrictions for Checkpointing

• Checkpointing is not supported for job arrays.

• If you do not specify qsub -c checkpoint-spec, it is unspecified, and defaults to the same as “s”.

• PBS limits the number of times it tries to run a job to 21, and tracks this count in the job’s run_count attribute. If
your job is checkpointed and requeued enough times, it will be held.

6.5 Holding and Releasing Jobs

You can place a hold on your job to do the following:

• A queued job remains queued until you release the hold; see section 6.5.3, “Holding a Job Before Execution”, on
page 118

• A running job stops running but can resume where it left off; see section 6.5.4.1, “Checkpointing and Requeueing
the Job”, on page 118

• A running job continues to run but is held if it is requeued; see section 6.5.4.2, “Setting Hold Type for a Running
Job”, on page 118

You hold a job using the qhold command; see “qhold” on page 144 of the PBS Professional Reference Guide.

You can release a held queued job to make it eligible to be scheduled to run, and you can release a hold on a running job.
You release a hold on your job using the qrls command; see “qrls” on page 175 of the PBS Professional Reference Guide.

The qhold command uses the following syntax:

qhold [-h <hold list>] <job ID> [<job ID> ...]

The qrls command uses the following syntax:

qrls [-h <hold list>] <job ID> [<job ID> ...]

For a job array the job ID must be enclosed in double quotes.

6.5.1 Types of Holds

The hold list specifies the types of holds to be placed on the job. The hold list argument is a string consisting of one or
more of the letters u, p, o, or s in any combination, or the letter n. The following table shows the hold type associated
with each letter:

If no -h option is specified, PBS applies a user hold to the jobs listed in the job ID list.

If a job in the job ID list is in the queued, held, or waiting states, the only change is that the hold type is added to the job’s
other holds. If the job is queued or waiting in an execution queue, the job is also put in the held state.

Table 6-1: Hold Types

Hold Type Meaning Who Can Set or Release

u User Job owner, Operator, Manager, administrator, root

o Other Operator, Manager, administrator, root

s System Manager, administrator, root, PBS (dependency)

n No hold Job owner, Operator, Manager, administrator, root

p Bad password Administrator, root
PBS Professional 19.2.3 User’s Guide UG-117

Chapter 6 Controlling How Your Job Runs
6.5.2 Requirements for Holding or Releasing a Job

The user executing the qhold or qrls command must have the necessary privilege to apply a hold or release a hold.
The same rules apply for releasing a hold and for for setting a hold.

6.5.3 Holding a Job Before Execution

Normally, PBS runs your job as soon as an appropriate slot opens up. However, you can tell PBS that the job is ineligible
to run and should remain queued. Use the “-h” option to qsub to apply a user hold to the job when you submit it. PBS
accepts the job and places it in the held state. The job remains held and ineligible to run until the hold is released.

The Hold_Types job attribute controls the job’s holding behavior; set it via qsub or a directive:

qsub -h my_job

#PBS -h

6.5.4 Holding a Job During Execution

6.5.4.1 Checkpointing and Requeueing the Job

If your job is checkpointable, you can stop its execution by holding it. In this case the following happens:

• The job is checkpointed

• The resources assigned to the job are released

• The job is put back in the execution queue in the Held state

See section 6.4.1, “Prerequisites for Checkpointing”, on page 115.

To hold your job, use the qhold command:

qsub -h my_job

6.5.4.2 Setting Hold Type for a Running Job

If your job is not checkpointable, qhold merely sets the job’s Hold_Types attribute. This has no effect unless the job is
requeued with the qrerun command. In that case the job remains queued and ineligible to run until you release the
hold.

6.5.5 Releasing a Job

You can release one or more holds on a job by using the qrls command.

The qrls command uses the following syntax:

qrls [-h <hold list>] <job ID> ...

For job arrays, the job ID must be enclosed in double quotes.

If you try to release a hold on a job which is not held, the qrls command is ignored. If you use the qrls command to
release a hold on a job that had been previously running and was checkpointed, the hold is released and the job is
returned to the queued (Q) state, and the job becomes eligible to be scheduled to run when resources come available.

The qrls command does not run the job; it simply releases the hold and makes the job eligible to be run the next time
the scheduler selects it.
UG-118 PBS Professional 19.2.3 User’s Guide

Controlling How Your Job Runs Chapter 6
6.5.6 Caveats and Restrictions for Holding and Releasing
Jobs

• The qhold command can be used on job arrays, but not on subjobs or ranges of subjobs. On job arrays, the qhold
command can be applied only in the ‘Q’, ‘B’ or ‘W’ states. This will put the job array in the ‘H’, held, state. If any
subjobs are running, they will run to completion. Job arrays cannot be moved in the ‘H’ state if any subjobs are run-
ning.

• Checkpointing is not supported for job arrays. Even on systems that support checkpointing, no subjobs will be
checkpointed; they will run to completion.

• To hold a running job and stop its execution, the job must be checkpointable. See section 6.4.1, “Prerequisites for
Checkpointing”, on page 115.

• The qrls command can only be used with job array objects, not with subjobs or ranges. The job array will be
returned to its pre-hold state, which can be either ‘Q’, ‘B’, or ‘W’.

• The qhold command can only be used with job array objects, not with subjobs or ranges. A hold can be applied
to a job array only from the ‘Q’, ‘B’ or ‘W’ states. This will put the job array in the ‘H’, held, state. If any subjobs
are running, they will run to completion. No queued subjobs will be started while in the ‘H’ state.

• PBS limits the number of times it tries to run a job to 21, and tracks this count in the job’s run_count attribute. If
your job is checkpointed and requeued enough times, it will be held.

6.5.7 Why is Your Job Held?

Your job may be held for any of the following reasons:

• Provisioning fails due to invalid provisioning request or to internal system error (“s”)

• After provisioning, the AOE reported by the vnode does not match the AOE requested by the job (“s”)

• The job was held by a PBS Manager or Operator (“o”)

• The job was checkpointed and requeued (“s”)

• Your job depends on a finished job for which PBS is maintaining history (‘s”)

• The job’s password is invalid (“p”)

• The job’s run_count attribute has a value greater than 20.
PBS Professional 19.2.3 User’s Guide UG-119

Chapter 6 Controlling How Your Job Runs
6.5.8 Examples of Holding and Releasing Jobs

The following examples illustrate how to use both the qhold and qrls commands. Notice that the state (“S”) column
shows how the state of the job changes with the use of these two commands.

qstat -a 54

 Req'd Elap

Job ID User Queue Jobname Sess NDS TSK Mem Time S Time

-------- ------ ----- ------- ---- --- --- --- ---- - ----

54.south barry workq engine -- -- 1 -- 0:20 Q --

qhold 54

qstat -a 54

 Req'd Elap

Job ID User Queue Jobname Sess NDS TSK Mem Time S Time

-------- ------ ----- ------- ---- --- --- --- ---- - ----

54.south barry workq engine -- -- 1 -- 0:20 H --

qrls -h u 54

qstat -a 54

 Req'd Elap

Job ID User Queue Jobname Sess NDS TSK Mem Time S Time

-------- ------ ----- ------- ---- --- --- --- ---- - ----

54.south barry workq engine -- -- 1 -- 0:20 Q --

6.6 Allowing Your Job to be Re-run

You can specify whether or not your job is eligible to be re-run if for some reason the job is terminated before it finishes.
Use the “-r” option to qsub to specify whether the job is rerunnable. The argument to this option is “y”, meaning that
the job can be re-run, or “n”, meaning that it cannot. If you do not specify whether or not your job is rerunnable, it is
rerunnable.

If your running your job more than once would cause a problem, mark your job as non-rerunnable. Otherwise, leave it as
rerunnable . The purpose of marking a job as non-rerunnable is to prevent it from starting more than once.

If a job that is marked non-rerunnable has an error during startup, before it begins execution, that job is requeued for
another attempt.

The Rerunable job attribute controls whether the job is rerunnable; you can set it via qsub or a PBS directive:

qsub -r n my_job

#PBS -r n
UG-120 PBS Professional 19.2.3 User’s Guide

Controlling How Your Job Runs Chapter 6
The following table lists the circumstances where the job’s Rerunable attribute makes a difference or does not:

6.6.1 Caveats and Restrictions for Marking Jobs as
Rerunnable

• Interactive jobs are not rerunnable.

• Job arrays are required to be rerunnable. PBS will not accept a job array that is marked as not rerunnable. You can
submit a job array without specifying whether it is rerunnable, and PBS will automatically mark it as rerunnable.

6.7 Controlling Number of Times Job is Re-run

PBS has a built-in limit of 21 on the number of times it will try to run your job. The number of attempts is tracked in the
job’s run_count attribute. By default, the value of run_count is zero at job submission. The job is held when the value
of run_count goes above 20.

You can reduce the number of times PBS attempts to run your job. You can specify a non-negative value for run_count
at job submission, and you can use qalter to raise the value of run_count while the job is running. You cannot give a
job more retries than the limit, and you cannot lower the value of run_count while the job is running.

6.7.1 Caveats for Raising Value of run_count Attribute

If your job is checkpointed and requeued enough times, it will be held.

6.8 Deferring Execution

Normally, PBS runs your job as soon as an appropriate slot opens up. Instead, you can specify a time after which the job
is eligible to run. The job is in the wait (W) state from the time it is submitted until the time it is eligible for execution.

Table 6-2: When does Rerunable Attribute Matter?

Circumstance Rerunnable Not Rerunnable

Job fails upon startup, before running Job is requeued Job is requeued

Job is running on multiple hosts, and one host goes down Job is requeued Job is deleted

Job is scheduled to run on multiple hosts, and did not start on at least
one host

Job is requeued Job is requeued

Server is shut down with a delay Job is requeued Job finishes

Server is shut down immediately Job is requeued Job is deleted

Job requests provisioning and provisioning script fails Job is requeued Job is requeued

Job is running on multiple hosts and one host becomes busy due to
console activity

Job is requeued Job is deleted

Higher-priority job needs resources Job is requeued Job continues to run
PBS Professional 19.2.3 User’s Guide UG-121

Chapter 6 Controlling How Your Job Runs
6.8.1 Syntax for Deferring Execution

Use the “-a <datetime>” option to qsub to specify the time after which the job is eligible for execution. The
datetime argument is in the form:

[[[[CC]YY]MM]DD]hhmm[.SS]

where

CC is the first two digits of the year (the century): optional

YY is the second two digits of the year: optional

MM is the two digits for the month: optional

DD is the day of the month: optional

hh is the hour

mm is the minute

SS is the seconds: optional

If the day DD is in the future, and the month MM is not specified, the month defaults to the current month. If the day DD
is in the past, and the month MM is not specified, the month is set to next month. For example, if today is the 10th, and
you specify the 12th but no month, your job is eligible to run two days from today, on the 12th.

Similarly, if the time hhmm is in the future, and the day DD is not specified, the day defaults to the current day. If the
time hhmm is in the past, and the day DD is not specified, the day is set to tomorrow. For example, if you submit a job at
11:15am with a time of “1110”, the job will be eligible to run at 11:10am tomorrow.

The job’s Execution _Time attribute controls deferred execution. You can set it using either of the following:

qsub -a 0700 my_job

#PBS -a 10220700

6.9 Setting Priority for Your Job

PBS includes a place in each job where you can specify the job’s priority. Your administrator may or may not choose to
use this priority value when scheduling jobs. Use the “-p <priority>” to specify the priority of the job. The priority
argument must be an integer between -1024 (lowest priority) and +1023 (highest priority) inclusive. The default is unset,
which is equivalent to zero.

The Priority job attribute contains the value you specify. Set it via qsub or a directive:

qsub -p 120 my_job

#PBS -p -300

If you need an absolute ordering of your own jobs, see section 6.2, “Using Job Dependencies”, on page 109.

6.10 Making qsub Wait Until Job Ends

Normally, when you submit a job, the qsub command exits after returning the ID of the new job. You can use the “-W
block=true” option to qsub to specify that you want qsub to “block”, meaning wait for the job to complete and
report the exit value of the job.

If your job is successfully submitted, qsub blocks until the job terminates or an error occurs. If job submission fails, no
special processing takes place.
UG-122 PBS Professional 19.2.3 User’s Guide

Controlling How Your Job Runs Chapter 6
If the job runs to completion, qsub exits with the exit status of the job. For job arrays, blocking qsub waits until the
entire job array is complete, then returns the exit status of the job array.

The block job attribute controls blocking. Set it either via qsub or a PBS directive:

qsub -W block=true

#PBS block=true

6.10.1 Signal Handling and Error Processing for Blocking
Jobs

Signals SIGQUIT and SIGKILL are not trapped, and immediately terminate the qsub process, leaving the associated
job either running or queued.

If qsub receives one of the signals SIGHUP, SIGINT, or SIGTERM, it prints a message and then exits with an exit sta-
tus of 2.

If the job is deleted before running to completion, or an internal PBS error occurs, qsub prints an an error message
describing the situation to this error stream and qsub exits with an exit status of 3.

6.10.2 Caveats for Blocking Jobs

• If you submit a job that is both blocking and interactive, the job’s exit status is not returned at the end of the job.

• PBS returns the exit status of a blocking job before staging finishes for the job. To see whether the job is still stag-
ing, use qstat -f, and look at the job’s substate attribute. This attribute has value 51 when files are staging out.

6.11 Running Your Job Interactively

PBS provides a special kind of batch job called an interactive-batch job or interactive job. An interactive job is treated
just like a regular batch job in that it is queued up, and has to wait for resources to become available before it can run.
However, once it starts, your terminal input and output are connected to the job similarly to a login session. It appears
that you are logged into one of the available execution machines, and the resources requested by the job are reserved for
that job. This is useful for debugging applications or for computational steering.

You can use GUI applications in interactive jobs on remote hosts. The PBS interface is slightly different on Linux and
Windows. For Linux, see section 6.11.9, “Receiving X Output from Interactive Linux Jobs”, on page 126. For Win-
dows, see section 6.11.10, “Submitting Interactive GUI Jobs on Windows”, on page 127.

Interactive jobs can use provisioning.

6.11.1 Input and Output for Interactive Jobs

An interactive job comes complete with a pseudotty suitable for running commands that set terminal characteristics.
Once the interactive job has started execution, input to and output from the job pass through qsub. You provide all input
to your interactive job through the terminal session in which the job runs.

For interactive jobs, you can specify PBS directives in a job script. You cannot provide commands to the job by using a
job script. For interactive jobs, PBS ignores executable commands in job scripts.
PBS Professional 19.2.3 User’s Guide UG-123

Chapter 6 Controlling How Your Job Runs
6.11.2 Running Your Interactive Job

To run your job interactively, you can do either of the following:

• Use qsub -I at the command line

• Use #PBS interactive=true (deprecated) in a PBS directive

When your interactive job is running, you can run commands, executables, shell scripts, DOS commands, etc. These
commands behave normally; for example, if the path to a command is not in your PATH environment variable, you must
provide the full path.

6.11.3 Lifecycle of an Interactive Job

1. You start the interactive job using qsub #PBS interactive=true (deprecated) or -I

2. If there is a script, PBS processes any directives in the script

3. The scheduler runs the job

4. Output is connected to the submission window

5. You run commands, executables, shell scripts, etc. interactively

6. The job is terminated

6.11.3.1 Terminating Interactive Jobs

When you run an interactive job, the qsub command does not terminate when the job is submitted. qsub remains run-
ning until one of the following:

• You qdel the job

• Someone else deletes the job

• You exit the shell

• The job is aborted

• You interrupt qsub with a SIGINT (the control-C key) before the scheduler starts the job.

Once the scheduler starts the job, SIGINT is ignored.

Under Linux, if you interrupt qsub before the job starts, qsub queries whether you want it to exit. If you respond
“yes”, qsub exits and the job is aborted. Under Windows, if you interrupt the job before it starts, the job is deleted, and
the following messages are printed:

qsub: wait for job <job ID> interrupted by signal 2

<job ID> is being deleted

6.11.4 Interactive Jobs and Exit Codes

Under Windows, if you specify an exit code when you exit the interactive session, via “exit <exit code>”, that exit code
is used as the job’s exit code. This exit code is visible in the output of the tracejob command.

Under Linux, you cannot provide an exit code for the interactive session.
UG-124 PBS Professional 19.2.3 User’s Guide

Controlling How Your Job Runs Chapter 6
6.11.5 Tracking Progress for Interactive Jobs

After you have submitted an interactive job, PBS prints the following message to the window where you submitted the
job:

qsub: waiting for job <job ID> to start

When the job is started by the scheduler, PBS prints the following message to the submission window:

qsub: job <job ID> ready

When the interactive job finishes, PBS prints the following message to the submission window:

qsub: job <job ID> completed

6.11.6 Special Sequences for Interactive Jobs

Keyboard-generated interrupts are passed to the job. Lines entered that begin with the tilde ('~') character and contain
special sequences are interpreted by qsub itself. The recognized special sequences are:

~.

qsub terminates execution. The batch job is also terminated.

 ~susp

Suspends the qsub program. “susp” is the suspend character, usually CTRL-Z.

 ~asusp

Suspends the input half of qsub (terminal to job), but allows output to continue to be displayed. “asusp” is the
auxiliary suspend character, usually control-Y.

6.11.7 Caveats and Restrictions for Interactive Jobs

• Make sure that your login file does not run processes in the background. See section 1.4.2.5, “Avoid Background
Processes Inside Jobs”, on page 6.

• You cannot run an array job interactively.

• Interactive jobs are not rerunnable.

• An interactive job on a Cray must run on a login node. See section 11.3.6, “Specify Host for Interactive Jobs”, on
page 191.

• You cannot use the CLS command in an interactive job. It will not clear the screen.

• After the scheduler has started the interactive job, SIGINT (Ctrl-C) is ignored.

• Under Linux, you cannot provide an exit code for the interactive session.

• When an interactive job finishes, staged files and stdout and/or stderr may not have been copied back yet.

6.11.8 Errors and Logging

• If PBS cannot open a remote interactive shell to run an interactive job, PBS prints the following error message:
“qsub: failed to run remote interactive shell”

• If IPC$ on the remote host cannot be connected, PBS prints the following message:
“Couldn't connect to host <hostname>”

• If PBS is successful in connecting to the IPC$ at the execution host, but fails to execute the remote shell, PBS prints
the following error message:
“Couldn't execute remote shell at host <hostname>”
PBS Professional 19.2.3 User’s Guide UG-125

Chapter 6 Controlling How Your Job Runs
6.11.9 Receiving X Output from Interactive Linux Jobs

Under Linux, you can receive X output from an interactive job via the qsub -X option.

6.11.9.1 How to Receive X Output Under Linux

To receive X output, use qsub -X -I. For example:

qsub -I -X <return>

xterm <return>

Control is returned here when your X process terminates. You can background the process here, if you want to.

6.11.9.1.i Receiving X Output on Non-submission Host

You can view your X output on a host that is not the job submission host. For example, you submit a job from SubHost,
and want to see the output on ViewHost. If you want to receive X output on a host that is not the submission host, for
example ViewHost, do the following:

• Run an X server on ViewHost

• On ViewHost, log into SubHost using ssh -X

• In window logged into SubHost, run qsub -I -X

6.11.9.2 Requirements for Receiving X Output

• You must be running Linux.

• The job must be interactive: you must also specify -I.

• An X server must be running on the system where you want to see the X output.

• The DISPLAY variable in the job’s submission environment must be set to the display where the X output is desired.

• Your administrator must configure MoM’s PATH to include the xauth utility.

6.11.9.3 Viewing X Output Job Attributes

Each job has two read-only attributes containing X forwarding information. These are the following:

forward_x11_cookie

This attribute contains the X authorization cookie.

forward_x11_port

This attribute contains the number of the port being listened to by the port forwarder on the submission host.

You can view these attributes using qstat -f <job ID>.

6.11.9.4 Caveats and Advice for Receiving X Output

• This option is not available under Windows.

• If you use the qsub -V option, PBS will handle the DISPLAY variable correctly.

• If you use the qsub -v DISPLAY option, you will get an error.

• At most 25 concurrent X applications can run using the same job session.

• If you experience a problem with X when using qsub –X –I, use the following to create the correct ~/.Xau-
thority file for qsub to use when establishing the X session:
ssh –X <hostname> server <-> <exec host(s)>
UG-126 PBS Professional 19.2.3 User’s Guide

Controlling How Your Job Runs Chapter 6
6.11.9.5 X Forwarding Errors

• If the DISPLAY environment variable is pointing to a display number that is correctly formatted but incorrect, sub-
mitting an interactive X forwarding job results in the following error message:
“cannot read data from 'xauth list <display number>', errno=<errno>”

• If the DISPLAY environment variable is pointing to an incorrectly formatted value, submitting an interactive X for-
warding job results in the following error message:
“qsub: Failed to get xauth data (check $DISPLAY variable)”

• If the X authority utility (xauth) is not found on the submission host, the following error message is displayed:
“execution of xauth failed: sh: xauth: command not found”

• When the execution of the xauth utility results in an error, the error message displayed by the xauth utility is pre-
ceded by the following:
“execution of xauth failed: ”

• When the qsub -X option is used without -I, the following error message is displayed:
"qsub: X11 forwarding possible only for Interactive Jobs"

6.11.10 Submitting Interactive GUI Jobs on Windows

You can run an interactive job that uses a GUI application. If the job executes on a host other than the one from which
you submit the job, PBS uses a remote viewer or interactive shell to connect the GUI application to the remote host.
Under Windows, PBS supports any GUI application, including Remote Viewer and X. If your job requires a GUI appli-
cation or interactive shell, you must run it as an interactive job.

To run an interactive PBS job that launches a GUI application:

qsub -I -G -- <GUI application>

When the same host is used for submission and execution, the application is launched on the local console. No
remote viewer client is launched.

When the submission and execution hosts are different, the GUI application is launched in the remote session using
the specified remote viewer. The remote viewer client is launched.

To run X under Windows, do not use the -X option. This option is not available under Windows. Use -G.

To launch an interactive shell in a PBS job:

qsub -I -G

When the submission and execution host are the same, the interactive shell is launched on the local console. No
remote viewer client is launched.

When the submission and execution hosts are different, the interactive shell is launched, and any GUI application
launched through this shell is visible in the remote session using the configured remote viewer. The remote viewer
client is launched.

Your interactive GUI job is finished or no longer running under the following circumstances:

• When the GUI application launched via qsub -I -G <GUI application> is closed

• When the interactive shell launched via qsub -I -G exits

• When the remote viewer is terminated, closed, or logged off, all applications started by the remote viewer are closed.

• When a GUI job is deleted via qdel, all the applications and tasks associated with the job are killed

See “-G [<path to GUI application or script>]” on page 213 of the PBS Professional Reference Guide.
PBS Professional 19.2.3 User’s Guide UG-127

Chapter 6 Controlling How Your Job Runs
6.12 Using Environment Variables

PBS provides your job with environment variables where the job runs. PBS takes some from your submission environ-
ment, and creates others. You can create environment variables for your job. The environment variables created by PBS
begin with “PBS_”. The environment variables that PBS takes from your submission (originating) environment begin
with “PBS_O_”.

For example, here are a few of the environment variables that accompany a job, with typical values:

PBS_O_HOME=/u/user1

PBS_O_LOGNAME=user1

PBS_O_PATH=/usr/bin:/usr/local/bin:/bin

PBS_O_SHELL=/bin/tcsh

PBS_O_HOST=host1

PBS_O_WORKDIR=/u/user1

PBS_JOBID=16386.server1

For a complete list of PBS environment variables, see “PBS Environment Variables” on page 387 of the PBS Profes-
sional Reference Guide.

6.12.1 Exporting All Environment Variables

The “-V” option declares that all environment variables in the qsub command’s environment are to be exported to the
batch job.

qsub -V my_job

#PBS -V

6.12.2 Exporting Specific Environment Variables

The “-v <variable list>” option to qsub allows you to specify additional environment variables to be exported
to the job. variable list names environment variables from the qsub command environment which are made available to
the job when it executes. These variables and their values are passed to the job. These variables are added to those
already automatically exported. Format: comma-separated list of strings in the form:

-v <variable>

or

-v <variable>=<value>

If a <variable>=<value> pair contains any commas, the value must be enclosed in single or double quotes, and the
<variable>=<value> pair must be enclosed in the kind of quotes not used to enclose the value. For example:

qsub -v DISPLAY,myvariable=32 my_job

qsub -v "var1='A,B,C,D'" job.sh

qsub -v a=10, "var2='A,B'", c=20, HOME=/home/zzz job.sh

6.12.3 Caveat for Environment Variables and Shell Functions

Make sure that no exported shell function you want to forward has the same name as an environment variable. The shell
function will not be visible in the environment.
UG-128 PBS Professional 19.2.3 User’s Guide

Controlling How Your Job Runs Chapter 6
6.12.4 Forwarding Exported Shell Functions

You can forward exported shell functions using either qsub -V or qsub -v <function name>. You can also put
these functions in your .profile or .login on the execution host(s).

If you use -v or -V, make sure that there is no environment variable with the same name as any exported shell functions
you want to forward; otherwise, the shell function will not be visible in the environment.

6.13 Specifying Which Jobs to Preempt

You can specify which groups of jobs your job is allowed to preempt in order to run. You can specify all the jobs in one
or more queues, and all jobs that request particular resources, by listing them in the preempt_targets resource.

Syntax:

...-l preempt_targets="queue=<queue name>[,queue=<queue name>],
Resource_List.<resource>=<value>[,Resource_List.<resource>=<value>]"

For example, to specify that your job can preempt jobs in the queue named QueueA and/or jobs that requested
arch=linux:

...-l preempt_targets="queue=QueueA,Resource_List.arch=linux"

You can prevent a job from preempting any other job in the complex by setting its preemption_targets to the keyword
“None” (case-insensitive).

Make the preempt_targets resource specification last or use another -l specification for subsequent resource specifica-
tions. Otherwise, subsequent resource specifications will look to PBS like additions to preempt_targets.

6.14 Releasing Unneeded Vnodes from Your Job

If you want to prevent unnecessary resource usage, you can release unneeded vnodes from your job. You can use the
pbs_release_nodes command or the release_nodes_on_stageout job attribute:

• You can use the pbs_release_nodes command either at the command line or in your job script to release
vnodes when the command is issued. You can use this command to release specific vnodes that are not on the pri-
mary execution host, or all vnodes that are not on the primary execution host. You cannot use the command to
release vnodes on the primary execution host. See “pbs_release_nodes” on page 92 of the PBS Professional Refer-
ence Guide.

• You can set the job’s release_nodes_on_stageout attribute to True so that PBS releases all of the job’s vnodes
that are not on the primary execution host when stageout begins. You must set the job’s stageout attribute as well.
See “Job Attributes” on page 318 of the PBS Professional Reference Guide.
PBS Professional 19.2.3 User’s Guide UG-129

Chapter 6 Controlling How Your Job Runs
6.14.1 Caveats and Restrictions for Releasing Vnodes

• You must specify a stageout parameter in order to be able to release vnodes on stageout. If you do not specify stage-
out, release_nodes_on_stageout has no effect.

• You can release only vnodes that are not on the primary execution host. You cannot release vnodes on the primary
execution host.

• The job must be running (in the R state).

• The pbs_release_nodes command is not supported on vnodes tied to Cray X* series systems (vnodes whose
vntype has the "cray_" prefix).

• The pbs_release_nodes command is not supported for vnodes managed by cpuset MoMs; partial release of
vnodes may result in leftover cpusets.

• If cgroups support is enabled, and pbs_release_nodes is called to release some but not all the vnodes managed
by a MoM, resources on those vnodes that are part of a cgroup are not released until the entire cgroup is released.

• If a vnode on a multi-vnode host is assigned exclusively to a job, and the vnode is released, the job will show that the
vnode is released, but the vnode will still show as assigned to the job in pbsnodes -av until the other vnodes on
that host have been released. If a vnode on a multi-vnode machine is not assigned exclusively to a job, and the
vnode is released, it shows as released whether or not the other vnodes on that host are released.

6.14.2 What Happens When You Release Vnodes

After you release a job’s vnode:

• The job’s $PBS_NODEFILE no longer lists the released vnode

• Once the job is completely removed from a released vnode, PBS licenses are updated accordingly

• The server continues to hold on to the job until receiving confirmation that the job has been cleaned up from the
vnode

• The vnode reports to the mother superior (MS) its resources_used* values for the job as the final action. The
released vnode no longer updates the resources_used values for the job since it's no longer part of the job. But MS
holds onto the data, and adds the data during final aggregation of resources_used values when job exits

• After every successful call to pbs_release_nodes, qstat shows updated values for the job’s exec_host,
exec_vnode, and Resource_List attributes

When releasing vnodes, if all vnodes assigned to a job managed by the same MoM have been released, the job is com-
pletely removed from that MoM’s host. This results in the following:

• The execjob_epilogue hook script (if it exists) runs

• Job processes are killed on that host

• Any job-specific specific files including job temporary directories are removed

• The execjob_end hook does not execute on the host

If one or more, but not all, the vnodes from an execution host assigned to a job are released, the job is not removed from
that host yet. If those released vnodes have been configured to be shared, they can be reassigned to other jobs.

6.14.3 Examples of Releasing Unneeded Vnodes From Job

Example 6-4: Submit a job that will release its non-primary-execution-host vnodes on stageout:

% qsub -W stageout=my_stageout@executionhost2:my_stageout.out -W release_nodes_on_stageout=true
job.scr

Example 6-5: Release particular vnodes from a job:
UG-130 PBS Professional 19.2.3 User’s Guide

Controlling How Your Job Runs Chapter 6
Syntax: pbs_release_nodes [-j <job ID>] <vnode name> [<vnode name>] ...]

% qsub job.scr

241.myserverhost

% qstat 241 | grep "exec|Resource_List|select"

exec_host = executionhost1[0]/0*0+executionhost2/0*0+executionhost3/0*2

exec_vnode =
(executionhost1[0]:mem=1048576kb:ncpus=1+executionhost1[1]:mem=1048576kb:ncpus=1+executionho
st1[2]:ncpus=1)+(executionhost2:mem=104

8576kb:ncpus=1+executionhost2[0]:mem=1048576k:ncpus=1+executionhost2[1]:ncpus=1)+(executionhost3
:ncpus=2:mem=2097152kb)

Resource_List.mem = 6gb

Resource_List.ncpus = 8

Resource_List.nodect = 3

Resource_List.place = scatter

Resource_List.select = ncpus=3:mem=2gb+ncpus=3:mem=2gb+ncpus=2:mem=2gb

schedselect = 1:ncpus=3:mem=2gb+1:ncpus=3:mem=2gb+1:ncpus=2:mem=2gb

% pbs_release_nodes -j 241 executionhost2[1] executionhost3

% qstat 241 | grep "exec|Resource_List|select"

exec_host = executionhost1[0]/0*0+executionhost2/0*0 (no executionhost3; all assigned vnodes in
executionhost3 have been released)

exec_vnode =
(executionhost1[0]:mem=1048576kb:ncpus=1+executionhost1[1]:mem=1048576kb:ncpus=1+executionho
st1[2]:ncpus=1)+(executionhost2:mem=1048576kb:ncpus=1+executionhost2[0]:mem=1048576kb:ncpus=
1) (executionhost2[1] and executionhost3 no longer appear)

Resource_List.mem = 4194304kb (reduced by 2gb from executionhost3)
Resource_List.ncpus = 5 (reduced by 3 CPUs, 1 from executionhost2[1] and 2 from executionhost3)
Resource_List.nodect = 2 (reduced by 1 chunk; when executionhost3 was released, its entire chunk assignment

disappeared)
Resource_List.place = scatter

schedselect = 1:mem=2097152kb:ncpus=3+1:mem=2097152kb:ncpus=2

Example 6-6: Release all vnodes not on the primary execution host:
PBS Professional 19.2.3 User’s Guide UG-131

Chapter 6 Controlling How Your Job Runs
Syntax: pbs_release_nodes [-j <job ID>] -a

% pbs_release_nodes -j 241 -a

% qstat -f 241

exec_host = executionhost1[0]/0*0

exec_vnode =
(executionhost1[0]:mem=1048576kb:ncpus=1)+executionhost1[1]:mem=1048576kb:ncpus=1+executionh
ost1[2]:ncpus=1)

Resource_List.mem = 2097152kb

Resource_List.ncpus = 3

Resource_List.nodect = 1

Resource_List.place = scatter

schedselect = 1:mem=2097152kb:ncpus=3

Example 6-7: Vnodes are no longer listed in $PBS_NODEFILE after they are released:

% qsub -l select=2:ncpus=1:mem=1gb -l place=scatter -I

qsub: waiting for job 247.executionhost1.example.com to start

qsub: job 247.executionhost1.example.com ready

% cat $PBS_NODEFILE

executionhost1.example.com

executionhost2.example.com

% pbs_release_nodes -j 247 executionhost2

% cat $PBS_NODEFILE

executionhost1.example.com

6.14.4 Errors

• The pbs_release_nodes command reports an error if any of the target vnodes is on the primary execution host.
Example:
% pbs_release_nodes -j 241 executionhost1[0]

pbs_release_nodes: Can't free 'executionhost1[0]' since it's on a a primary execution host

• The pbs_release_nodes command reports an error if executed by someone who does not have the required
privilege. Example:
% pbs_release_nodes -j 248 executionhost2

pbs_release_nodes: Unauthorized Request
UG-132 PBS Professional 19.2.3 User’s Guide

Controlling How Your Job Runs Chapter 6
PBS also writes server_logs entry of the form:

07/13/2017 04:29:23;0020;Server@corretja;Job;<job-id>;Unauthorized Request, request type: 90,
Object: Job, Name: <job ID>, request from: <requesting user>@<requestor host>

• The pbs_release_nodes command reports an error if the vnode being released is not part of the job. Example:
% pbs_release_nodes -j 249 executionhost3

pbs_release_nodes: node(s) requested to be released not part of the job: executionhost3

• The pbs_release_nodes command reports an error if issued on a job that is not in a running state. Example:
% pbs_release_nodes -j 251 executionhost3

pbs_release_nodes: Request invalid for state of job

• The pbs_release_nodes command reports an error if both the '-a' option and a list of vnodes are specified on
the command line. Example:
% pbs_release_nodes -j 252 -a executionhost2

usage: pbs_release_nodes [-j job_identifier] host_or_vnode1 host_or_vnode2 ...

usage: pbs_release_nodes [-j job_identifier] -a

pbs_release_nodes --version

• The pbs_release_nodes command reports an error if it cannot find a job identifier to associate with the
release-vnode action. Example:

Execute the following from outside a PBS job:

% pbs_release_nodes -a

pbs_release_nodes: No jobid given

• The pbs_release_nodes command reports an error message and exits if at least one of the vnodes specified is
a Cray X* series node. Example:
% pbs_release_nodes -j 253 cray_node

"pbs_release_nodes: not currently supported on Cray X* series nodes: <cray_node>"

• The pbs_release_nodes command reports an error message and exits if at least one of the vnodes specified is
managed by a pbs_mom running cpusets (i.e. resources_available.arch='linux_cpuset'). Example:
% pbs_release_nodes -j 253 cray_node

"pbs_release_nodes: not currently supported on nodes whose resources are part of a cpuset:
<cpuset_node>"

6.15 Running Your Job in a Container

You can specify a container in which to run a job by setting the CONTAINER_IMAGE environment variable to the
name of the image and passing the environment variable with the job:

qsub ... -v CONTAINER_IMAGE=<name of container image> ...

If you do not specify a script, for example “qsub -v CONTAINER_IMAGE=hello-world”, qsub asks you interactively for
a script.

If you supply a script to qsub, PBS runs the script inside the specified container.

You can run multi-vnode, multi-host, and interactive jobs in Docker containers. For a multi-host job, you can use any
version of OpenMPI with this feature.

PBS runs an infinite-duration sleep command in the container to keep the container alive.
PBS Professional 19.2.3 User’s Guide UG-133

Chapter 6 Controlling How Your Job Runs
6.15.1 Specifying Shell in Container

You can run your default shell inside a container without taking any extra steps. To run a shell in a container using any-
thing besides the default, you must specify the shell using the -S option to qsub. Any selected shell should be available
inside the container.

6.15.2 Caveats and Restrictions

• You cannot use old-style resource requests such as -lncpus with containers.

• Any entry point in a container is disabled. If you want to run the equivalent of an entry point command, you must
include the complete command with its arguments on the command line.

6.16 Running Your Job in the Cloud

To submit a job that can run in the cloud, submit it to the configured cloud queue. Syntax:

qsub -q <name of cloud queue> -l <resource request> <job script>

For example:

qsub -q cloudq -- /bin/sleep 100

6.16.1 Restrictions and Caveats for Cloud Bursting with PBS

• Cloud bursting is supported only on Linux.

• Reservations are not supported on cloud nodes.

6.17 Allowing Your Job to Tolerate Vnode Failures

You can allow your job to tolerate vnode failures if your administrator has configured PBS to do so. PBS lets you allo-
cate extra vnodes to a job so that the job can successfully start and run even if some vnodes fail. PBS can allocate the
extra vnodes only for startup, or for the life of the job. Later, for jobs where the extra vnodes are needed only for reliable
startup, PBS can trim the allocated vnodes back to just what the job will use to run, releasing the unneeded vnodes for
other jobs.

To allow your job to tolerate vnode failures during startup only, set the job’s tolerate_node_failures attribute to “start”.

To allow your job to tolerate vnode failures during the life of the job, set the job’s tolerate_node_failures attribute to
“all”.

Examples of setting this attribute:

• Via qsub:
qsub -W tolerate_node_failures="all" <job script>

• Via qalter:
qalter -W tolerate_node_failures="job_start" <job ID>
UG-134 PBS Professional 19.2.3 User’s Guide

7

Reserving Resources Ahead of

Time

7.1 Glossary

Advance reservation

A reservation for a set of resources for a specified time. The reservation is only available to a specific user or
group of users.

Standing reservation

An advance reservation which recurs at specified times. For example, you can reserve 8 CPUs and 10GB every
Wednesday and Thursday from 5pm to 8pm, for the next three months.

Occurrence of a standing reservation

An instance of the standing reservation.

An occurrence of a standing reservation behaves like an advance reservation, with the following exceptions:

• while a job can be submitted to a specific advance reservation, it can only be submitted to the standing res-
ervation as a whole, not to a specific occurrence. You can only specify when the job is eligible to run.
See“qsub” on page 207 of the PBS Professional Reference Guide.

• when an advance reservation ends, it and all of its jobs, running or queued, are deleted, but when an occur-
rence ends, only its running jobs are deleted.

Each occurrence of a standing reservation has reserved resources which satisfy the resource request, but each
occurrence may have its resources drawn from a different source. A query for the resources assigned to a stand-
ing reservation will return the resources assigned to the soonest occurrence, shown in the resv_nodes attribute
reported by pbs_rstat.

Soonest occurrence of a standing reservation

The occurrence which is currently active, or if none is active, then it is the next occurrence.

Degraded reservation

An advance reservation for which one or more associated vnodes are unavailable.

A standing reservation for which one or more vnodes associated with any occurrence are unavailable.

7.2 Prerequisites for Reserving Resources

The time for which a reservation is requested is in the time zone at the submission host.

You must set the submission host’s PBS_TZID environment variable. The format for PBS_TZID is a timezone loca-
tion. Example: America/Los_Angeles, America/Detroit, Europe/Berlin, Asia/Calcutta. See
section 1.4.5, “Setting Time Zone for Submission Host”, on page 10.
PBS Professional 19.2.3 User’s Guide UG-135

Chapter 7 Reserving Resources Ahead of Time
7.3 Creating and Using Reservations

7.3.1 Introduction to Creating and Using Reservations

You can create both advance and standing reservations using the pbs_rsub command. PBS either confirms that the res-
ervation can be made, or rejects the request. Once the reservation is confirmed, PBS creates a queue for the reservation’s
jobs. Jobs are then submitted to this queue.

When a reservation is confirmed, it means that the reservation will not conflict with currently running jobs, other con-
firmed reservations, or dedicated time, and that the requested resources are available for the reservation. A reservation
request that fails these tests is rejected. All occurrences of a standing reservation must be acceptable in order for the
standing reservation to be confirmed.

The pbs_rsub command returns a reservation ID, which is the reservation name. For an advance reservation, this res-
ervation ID has the format:

R<unique integer>.<server name>

For a standing reservation, this reservation ID refers to the entire series, and has the format:

S<unique integer>.<server name>

You specify the resources for a reservation using the same syntax as for a job. Jobs in reservations are placed the same
way non-reservation jobs are placed in placement sets.

The time for which a reservation is requested is in the time zone at the submission host.

The pbs_rsub command returns a reservation ID string, and the current status of the reservation.

For the options to the pbs_rsub command, see “pbs_rsub” on page 96 of the PBS Professional Reference Guide.

7.3.2 Creating Advance Reservations

You create an advance reservation using the pbs_rsub command. PBS must be able to calculate the start and end times
of the reservation, so you must specify two of the following three options:

D Duration

E End time

R Start time

7.3.2.1 Setting Time Zone for Advance Reservations

If you need the time zone for your advance reservation to be UTC, set this when you create the reservation:

TZ=UTC pbs_rsub -R...

7.3.2.2 Examples of Creating Advance Reservations

The following example shows the creation of an advance reservation asking for 1 vnode, 30 minutes of wall-clock time,
and a start time of 11:30. Since an end time is not specified, PBS will calculate the end time based on the reservation start
time and duration.

pbs_rsub -R 1130 -D 00:30:00

PBS returns the reservation ID:

R226.south UNCONFIRMED
UG-136 PBS Professional 19.2.3 User’s Guide

Reserving Resources Ahead of Time Chapter 7
The following example shows an advance reservation for 2 CPUs from 8:00 p.m. to 10:00 p.m.:

pbs_rsub -R 2000.00 -E 2200.00 -l select=1:ncpus=2

PBS returns the reservation ID:

R332.south UNCONFIRMED

7.3.3 Creating Standing Reservations

You create standing reservations using the pbs_rsub command. You must specify a start and end date when creating a
standing reservation. The recurring nature of the reservation is specified using the -r option to pbs_rsub. The -r
option takes the recurrence_rule argument, which specifies the standing reservation’s occurrences. The recurrence
rule uses iCalendar syntax, and uses a subset of the parameters described in RFC 2445.

The recurrence rule can take two forms:

"FREQ=<freq spec>;COUNT=<count spec>;<interval spec>"

In this form, you specify how often there will be occurrences, how many there will be, and which days and/or hours
apply.

"FREQ=<freq spec>;UNTIL=<until spec>;<interval spec>"

Do not include any spaces in your recurrence rule.

In this form, you specify how often there will be occurrences, when the occurrences will end, and which days and/or
hours apply.

freq spec
This is the frequency with which the reservation repeats. Valid values are WEEKLY|DAILY|HOURLY

When using a freq spec of WEEKLY, you may use an interval spec of BYDAY and/or BYHOUR. When using a
freq spec of DAILY, you may use an interval spec of BYHOUR. When using a freq spec of HOURLY, do not use
an interval spec.

count spec
The exact number of occurrences. Number up to 4 digits in length. Format: integer.

interval spec
Specifies the interval at which there will be occurrences. Can be one or both of BYDAY=<days> or
BYHOUR=<hours>. Valid values are BYDAY = MO|TU|WE|TH|FR|SA|SU and BYHOUR = 0|1|2|...|23.
When using both, separate them with a semicolon. Separate days or hours with a comma.

For example, to specify that there will be recurrences on Tuesdays and Wednesdays, at 9 a.m. and 11 a.m., use
BYDAY=TU,WE;BYHOUR=9,11

BYDAY should be used with FREQ=WEEKLY. BYHOUR should be used with FREQ=DAILY or
FREQ=WEEKLY.

until spec
Occurrences will start up to but not after this date and time. This means that if occurrences last for an hour, and
normally start at 9 a.m., then a time of 9:05 a.m on the day specified in the until spec means that an occurrence
will start on that day.

Format: YYYYMMDD[THHMMSS]

Note that the year-month-day section is separated from the hour-minute-second section by a capital T.

Default: 3 years from time of reservation creation.
PBS Professional 19.2.3 User’s Guide UG-137

Chapter 7 Reserving Resources Ahead of Time
7.3.3.1 Setting Reservation Start Time and Duration

In a standing reservation, the arguments to the -R and -E options to pbs_rsub can provide more information than they
do in an advance reservation. In an advance reservation, they provide the start and end time of the reservation. In a
standing reservation, they can provide the start and end time, but they can also be used to compute the duration and the
offset from the interval start.

The difference between the values of the arguments for -R and -E is the duration of the reservation. For example, if you
specify

-R 0930 -E 1145

the duration of your reservation will be two hours and fifteen minutes. If you specify

-R 150800 -E 170830

the duration of your reservation will be two days plus 30 minutes.

The interval spec can be used to specify the day or the hour at which the interval starts. If you specify

-R 0915 -E 0945 ... BYHOUR=9,10

the duration is 30 minutes, and the offset is 15 minutes from the start of the interval. The interval start is at 9 and again at
10. Your reservation will run from 9:15 to 9:45, and again at 10:15 and 10:45. Similarly, if you specify

-R 0800 -E -1000 ... BYDAY=WE,TH

the duration is two hours and the offset is 8 hours from the start of the interval. Your reservation will run Wednesday
from 8 to 10, and again on Thursday from 8 to 10.

Elements specified in the recurrence rule override those specified in the arguments to the -R and -E options. Therefore if
you specify

-R 0730 -E 0830 ... BYHOUR=9

the duration is one hour, but the hour element (9:00) in the recurrence rule has overridden the hour element specified in
the argument to -R (7:00). The offset is still 30 minutes after the interval start. Your reservation will run from 9:30 to
10:30. Similarly, if the 16th is a Monday, and you specify

-R 160800 -E 170900 ... BYDAY=TU;BYHOUR=11

the duration 25 hours, but both the day and the hour elements have been overridden. Your reservation will run on Tues-
day at 11, for 25 hours, ending Wednesday at 12. However, if you specify

-R 160810 -E 170910 ... BYDAY=TU;BYHOUR=11

the duration is 25 hours, and the offset from the interval start is 10 minutes. Your reservation will run on Tuesday at
11:10, for 25 hours, ending Wednesday at 12:10. The minutes in the offset weren’t overridden by anything in the recur-
rence rule.

The values specified for the arguments to the -R and -E options can be used to set the start and end times in a standing
reservation, just as they are in an advance reservation. To do this, don’t override their elements inside the recurrence
rule. If you specify

-R 0930 -E 1030 ... BYDAY=MO,TU

you haven’t overridden the hour or minute elements. Your reservation will run Monday and Tuesday, from 9:30 to 10:30.
UG-138 PBS Professional 19.2.3 User’s Guide

Reserving Resources Ahead of Time Chapter 7
7.3.3.2 Requirements for Creating Standing Reservations

• You must specify a start and end date.

• You must set the submission host’s PBS_TZID environment variable. The format for PBS_TZID is a timezone
location. Example: America/Los_Angeles, America/Detroit, Europe/Berlin, Asia/Cal-
cutta. See section 1.4.5, “Setting Time Zone for Submission Host”, on page 10.

• The recurrence rule must be one unbroken line.

• The recurrence rule must be enclosed in double quotes.

• Vnodes that have been configured to accept jobs only from a specific queue (vnode-queue restrictions) cannot be
used for advance or standing reservations. See your PBS administrator to determine whether some vnodes have been
configured to accept jobs only from specific queues.

• Make sure that there are no spaces in your recurrence rule.

7.3.3.3 Examples of Creating Standing Reservations

For a reservation that runs every day from 8am to 10am, for a total of 10 occurrences:

pbs_rsub -R 0800 -E 1000 - r"FREQ=DAILY;COUNT=10"

Every weekday from 6am to 6pm until December 10, 2008:

pbs_rsub -R 0600 -E 1800 -r "FREQ=WEEKLY;BYDAY=MO,TU,WE,TH,FR;UNTIL=20081210"

Every week from 3pm to 5pm on Monday, Wednesday, and Friday, for 9 occurrences, i.e., for three weeks:

pbs_rsub -R 1500 -E 1700 -r "FREQ=WEEKLY;BYDAY=MO,WE,FR;COUNT=9"

7.3.3.4 Getting Confirmation of a Reservation

By default the pbs_rsub command does not immediately notify you whether the reservation is confirmed or denied.
Instead you receive email with this information. You can specify that the pbs_rsub command should wait for confir-
mation by using the -I <block time> option. The pbs_rsub command will wait up to block time seconds for the reser-
vation to be confirmed or denied and then notify you of the outcome. If block time is negative and the reservation is not
confirmed in that time, the reservation is automatically deleted.

To find out whether the reservation has been confirmed, use the pbs_rstat command. It will display the state of the
reservation. CO and RESV_CONFIRMED indicate that it is confirmed. If the reservation does not appear in the output
from pbs_rstat, that means that the reservation was denied.

To ensure that you receive mail about your reservations, set the reservation’s Mail_Users attribute via the -M <email
address> option to pbs_rsub. By default, you will get email when the reservation is terminated or confirmed. If you
want to receive email about events other than those, set the reservation’s Mail_Points attribute via the -m <mail events>
option. For more information, see “pbs_rsub” on page 96 of the PBS Professional Reference Guide and “Reservation
Attributes” on page 295 of the PBS Professional Reference Guide.

7.4 Changing Reservations

You can use the pbs_ralter command to alter an existing advance or standing reservation. You can change the start
time, end time, events that generate mail, mail recipient list, and reservation name. You can change the end time for a
running reservation with running jobs. You can use this command to change an advance reservation or the next or cur-
rent instance of a standing reservation. Syntax:

pbs_ralter [-E <end time>] [-I <block time>] [-m <mail points>] [-M <mail list>] [-N <reservation name>] [-R
<start time>] <reservation ID>
PBS Professional 19.2.3 User’s Guide UG-139

Chapter 7 Reserving Resources Ahead of Time
After the change is requested, the change is either confirmed or denied. On denial of the change, the reservation is not
deleted and is left as is, and the following message appears in the server’s log:

Unable to alter reservation <reservation ID>

When a reservation is confirmed, the following message appears in the server’s log:

Reservation alter successful for <reservation ID>

To find out whether or not the change was allowed:

• Use the pbs_rstat command: see whether you altered reservation attribute(s)

• Use the interactive option: check for confirmation after the blocking time has run out

If the reservation has not started and it cannot be confirmed on the same vnodes, PBS searches for another set of vnodes.

You must be the reservation owner or the PBS Administrator to run this command.

For details, see “pbs_ralter” on page 88 of the PBS Professional Reference Guide.

7.5 Deleting Reservations

You can delete an advance or standing reservation by using the pbs_rdel command. For a standing reservation, you
can only delete the entire reservation, including all occurrences. When you delete a reservation, all of the jobs that have
been submitted to the reservation are also deleted. A reservation can be deleted by its owner or by a PBS Operator or
Manager. For example, to delete S304.south:

pbs_rdel S304.south

or

pbs_rdel S304

7.6 Viewing the Status of a Reservation

The following table shows the list of possible states for a reservation. The states that you will usually see are CO, UN,
BD, and RN, although a reservation usually remains unconfirmed for too short a time to see that state. See “Reservation
States” on page 357 of the PBS Professional Reference Guide.

To view the status of a reservation, use the pbs_rstat command. It will display the status of all reservations at the
PBS server. For a standing reservation, the pbs_rstat command will display the status of the soonest occurrence.
Duration is shown in seconds. The pbs_rstat command will not display a custom resource which has been created to
be invisible. See section 4.3.8, “Caveats and Restrictions on Requesting Resources”, on page 58. This command has
three options:

Table 7-1: Options to pbs_rstat Command

Option Meaning Description

B Brief Lists only the names of the reservations

S Short Lists in table format the name, queue name, owner, state, and start, duration and end times
of each reservation

F Full Lists the name and all non-default-value attributes for each reservation.

<none> Default Default is S option
UG-140 PBS Professional 19.2.3 User’s Guide

Reserving Resources Ahead of Time Chapter 7
The full listing for a standing reservation is identical to the listing for an advance reservation, with the following addi-
tions:

• A line that specifies the recurrence rule:
reserve_rrule = FREQ=WEEKLY;BYDAY=MO;COUNT=5

• An entry for the vnodes reserved for the soonest occurrence of the standing reservation. This entry also appears for
an advance reservation, but will be different for each occurrence:
resv_nodes=(<vnode name>:...)

• A line that specifies the total number of occurrences of the standing reservation:
reserve_count = 5

• The index of the soonest occurrence:
reserve_index = 1

• The timezone at the site of submission of the reservation is appended to the reservation’s Variable_List attribute.
For example, in California:
Variable_List=<other variables>PBS_TZID=America/Los_Angeles

To get the status of a reservation at a server other than the default server, set the PBS_SERVER environment variable to
the name of the server you wish to query, then use the pbs_rstat command. Your PBS commands will treat the new
server as the default server, so you may wish to unset this environment variable when you are finished.

You can also get information about the reservation’s queue by using the qstat command. See “qstat” on page 192 of
the PBS Professional Reference Guide .

7.6.1 Examples of Viewing Reservation Status Using
pbs_rstat

In our example, we have one advance reservation and one standing reservation. The advance reservation is for today, for
two hours, starting at noon. The standing reservation is for every Thursday, for one hour, starting at 3:00 p.m. Today is
Monday, April 28th, and the time is 1:00, so the advance reservation is running, and the soonest occurrence of the stand-
ing reservation is Thursday, May 1, at 3:00 p.m.

Example brief output:

pbs_rstat -B

Name: R302.south

Name: S304.south

Example short output:

pbs_rstat -S

Name Queue User State Start / Duration / End

--

R302.south R302 user1 RN Today 12:00 / 7200/ Today 14:00

S304.south S304 user1 CO May 1 2008 15:00/3600/May 1 2008 16:00
PBS Professional 19.2.3 User’s Guide UG-141

Chapter 7 Reserving Resources Ahead of Time
Example full output:

pbs_rstat -F

Name: R302.south

Reserve_Name = NULL

Reserve_Owner = user1@south.mydomain.com

reserve_state = RESV_RUNNING

reserve_substate = 5

reserve_start = Mon Apr 28 12:00:00 2008

reserve_end = Mon Apr 28 14:00:00 2008

reserve_duration = 7200

queue = R302

Resource_List.ncpus = 2

Resource_List.nodect = 1

Resource_List.walltime = 02:00:00

Resource_List.select = 1:ncpus=2

Resource_List.place = free

resv_nodes = (south:ncpus=2)

Authorized_Users = user1@south.mydomain.com

server = south

ctime = Mon Apr 28 11:00:00 2008

Mail_Users = user1@mydomain.com

mtime = Mon Apr 28 11:00:00 2008

Variable_List = PBS_O_LOGNAME=user1,PBS_O_HOST=south.mydomain.com

Name: S304.south

Reserve_Name = NULL

Reserve_Owner = user1@south.mydomain.com

reserve_state = RESV_CONFIRMED

reserve_substate = 2

reserve_start = Thu May 1 15:00:00 2008

reserve_end = Thu May 1 16:00:00 2008

reserve_duration = 3600

queue = S304

Resource_List.ncpus = 2

Resource_List.nodect = 1

Resource_List.walltime = 01:00:00

Resource_List.select = 1:ncpus=2

Resource_List.place = free

resv_nodes = (south:ncpus=2)

reserve_rrule = FREQ=WEEKLY;BYDAY=MO;COUNT=5

reserve_count = 5

reserve_index = 2

Authorized_Users = user1@south.mydomain.com

server = south

ctime = Mon Apr 28 11:01:00 2008

Mail_Users = user1@mydomain.com
UG-142 PBS Professional 19.2.3 User’s Guide

Reserving Resources Ahead of Time Chapter 7
mtime = Mon Apr 28 11:01:00 2008

Variable_List = PBS_O_LOGNAME=user1,PBS_O_HOST=south.mydomain.com,PBS_TZID=America/Los_Angeles

7.7 Using Your Reservation

7.7.1 Submitting a Job to a Reservation

Jobs can be submitted to the queue associated with a reservation, or they can be moved from another queue into the res-
ervation queue. You submit a job to a reservation by using the -q <queue> option to the qsub command to specify the
reservation queue. For example, to submit a job to the soonest occurrence of a standing reservation named
S123.south, submit to its queue S123:

qsub -q S123 <script>

You move a job into a reservation queue by using the qmove command. For more information, see “qsub” on page 207
of the PBS Professional Reference Guide and “qmove” on page 167 of the PBS Professional Reference Guide. For
example, to qmove job 22.myhost from workq to S123, the queue for the reservation named S123.south:

qmove S123 22.myhost

or

qmove S123 22

A job submitted to a standing reservation without a restriction on when it can run will be run, if possible, during the soon-
est occurrence. In order to submit a job to a specific occurrence, use the -a <start time> option to the qsub command,
setting the start time to the time of the occurrence that you want. You can also use a cron job to submit a job at a spe-
cific time. See “qsub” on page 207 of the PBS Professional Reference Guide and the cron(8) man page.

7.7.2 Converting a Job into a Reservation Job

The pbs_rsub command can be used to convert a normal job into a reservation job that will run as soon as possible.
PBS creates a reservation queue and a reservation, and moves the job into the queue. Other jobs can also be moved into
that queue via qmove or submitted to that queue via qsub. The reservation is called an ASAP reservation.

The format for converting a normal job into a reservation job is:

pbs_rsub [-l walltime=time] -W qmove=<job ID>

Example:

pbs_rsub -W qmove=54

pbs_rsub -W qmove="1234[].server"

The -R and -E options to pbs_rsub are disabled when using the -W qmove option.

For more information, see “pbs_rsub” on page 96 of the PBS Professional Reference Guide.

A job’s default walltime is 5 years. Therefore an ASAP reservation’s start time can be in 5 years, if all the jobs in the sys-
tem have the default walltime.

You cannot use the pbs_rsub command (or any other command) to request a custom resource which has been created
to be invisible or unrequestable. See section 4.3.8, “Caveats and Restrictions on Requesting Resources”, on page 58.

7.7.3 Viewing Status of a Job Submitted to a Reservation

You can view the status of a job that has been submitted to a reservation or to an occurrence of a standing reservation by
using the qstat command. See “qstat” on page 192 of the PBS Professional Reference Guide.
PBS Professional 19.2.3 User’s Guide UG-143

Chapter 7 Reserving Resources Ahead of Time
For example, if a job named MyJob has been submitted to the soonest occurrence of the standing reservation named
S304.south, it is listed under S304, the name of the queue:

qstat

Job id Name User Time Use S Queue

---------- --------- ------------ -------- -- -----

139.south MyJob user1 0 Q S304

7.7.4 How Reservations Treat Jobs

A confirmed reservation will accept jobs into its queue at any time. Jobs are only scheduled to run from the reservation
once the reservation period arrives.

The jobs in a reservation are not allowed to use, in aggregate, more resources than the reservation requested. A reserva-
tion job is accepted in the reservation only if its requested walltime will fit within the reservation period. So for example
if the reservation runs from 10:00 to 11:00, and the job’s walltime is 4 hours, the job will not be started.

When an advance reservation ends, any running or queued jobs in that reservation are deleted.

When an occurrence of a standing reservation ends, any running jobs in that reservation are killed. Any jobs still queued
for that reservation are kept in the queued state. They are allowed to run in future occurrences. When the last occurrence
of a standing reservation ends, all jobs remaining in the reservation are deleted, whether queued or running.

A job in a reservation cannot be preempted.

A job in a reservation runs with the normal job environment variables; see section 6.12, “Using Environment Variables”,
on page 128.

7.7.4.1 Caveats for How Reservations Treat Jobs

If you submit a job to a reservation, and the job’s walltime fits within the reservation period, but the time between when
you submit the job and when the reservation ends is less than the job’s walltime, PBS will start the job, and then kill it if
it is still running when the reservation ends.

7.7.5 Who Can Use Your Reservation

By default, the reservation accepts jobs only from the user who created the reservation, and accepts jobs submitted from
any group or host. You can specify a list of users and groups whose jobs will and will not be accepted by the reservation
by setting the reservation’s Authorized_Users and Authorized_Groups attributes using the -U auth_<user
list> and -G <authorized group list> options to pbs_rsub. You can specify the hosts from which jobs can and cannot
be submitted by setting the reservation’s Authorized_Hosts attribute using the -H <authorized host list> option to
pbs_rsub.

The administrator can also specify which users and groups can and cannot submit jobs to a reservation, and the list of
hosts from which jobs can and cannot be submitted.

For more information, see “pbs_rsub” on page 96 of the PBS Professional Reference Guide and “Reservation Attributes”
on page 295 of the PBS Professional Reference Guide.
UG-144 PBS Professional 19.2.3 User’s Guide

Reserving Resources Ahead of Time Chapter 7
7.8 Reservation Caveats and Errors

7.8.1 Time Zone Must be Correct

The environment variable PBS_TZID must be set at the submission host. The time for which a reservation is requested
is the time defined at the submission host. See section 1.4.5, “Setting Time Zone for Submission Host”, on page 10.

7.8.2 Reservation Errors

The following table describes the error messages that apply to reservations:

Table 7-2: Reservation Errors

Description of Error

Server
Log

Error
Code

Error Message

Invalid syntax when specifying a standing reservation 15133 “pbs_rsub error: Undefined iCal-
endar syntax”

Recurrence rule has both a COUNT and an UNTIL
parameter

15134 “pbs_rsub error: Undefined iCal-
endar syntax. COUNT or UNTIL is
required”

Recurrence rule missing valid COUNT or UNTIL param-
eter

15134 “pbs_rsub error: Undefined iCal-
endar syntax. A valid COUNT or
UNTIL is required”

Problem with the start and/or end time of the reservation,
such as:

• Given start time is earlier than current date and time

• Missing start time or end time

• End time is earlier than start time

15086 “pbs_rsub: Bad time specifica-
tion(s)”

Reservation duration exceeds 24 hours and the recurrence
frequency, FREQ, is set to DAILY

15129 “pbs_rsub error: DAILY recurrence
duration cannot exceed 24 hours”

Reservation duration exceeds 7 days and the frequency
FREQ is set to WEEKLY

15128 “pbs_rsub error: WEEKLY recur-
rence duration cannot exceed 1
week”

Reservation duration exceeds 1 hour and the frequency
FREQ is set to HOURLY or the BY-rule is set to
BYHOUR and occurs every hour, such as
BYHOUR=9,10

15130 “pbs_rsub error: HOURLY recur-
rence duration cannot exceed 1
hour”

The PBS_TZID environment variable is not set correctly
at the submission host; rejection at submission host

None “pbs_rsub error: a valid PBS_TZID
timezone environment variable is
required”

The PBS_TZID environment variable is not set correctly
at the submission host; rejection at server

15135 “Unrecognized PBS_TZID environ-
ment variable”
PBS Professional 19.2.3 User’s Guide UG-145

Chapter 7 Reserving Resources Ahead of Time
7.8.3 Time Required Between Reservations

Leave enough time between reservations for the reservations and jobs in them to clean up. A job consumes resources
even while it is in the E or exiting state. This can take longer when large files are being staged. If the job is still running
when the reservation ends, it may take up to two minutes to be cleaned up. The reservation itself cannot finish cleaning
up until its jobs are cleaned up. This will delay the start time of jobs in the next reservation unless there is enough time
between the reservations for cleanup.

7.8.4 Reservation Information in the Accounting Log

The PBS server writes an accounting record for each reservation in the job accounting file. The accounting record for a
reservation is similar to that for a job. The accounting record for any job belonging to a reservation will include the res-
ervation ID. See "Accounting" on page 589 in the PBS Professional Administrator’s Guide.

7.8.5 Reservation Fault Tolerance

If one or more vnodes allocated to an advance reservation or to the soonest occurrence of a standing reservation become
unavailable, the reservation’s state becomes DG or RESV_DEGRADED. A degraded reservation does not have all the
reserved resources to run its jobs.

PBS attempts to reconfirm degraded reservations. This means that it looks for alternate available vnodes on which to run
the reservation. The reservation’s retry_time attribute lists the next time when PBS will try to reconfirm the reservation.

If PBS is able to reconfirm a degraded reservation, the reservation’s state becomes CO, or RESV_CONFIRMED, and
the reservation’s resv_nodes attribute shows the new vnodes.

7.8.6 Job and Reservation Exclusivity Must Match

If your job requests exclusive placement, and it is in a reservation, the reservation must also request exclusive placement
via -l place=excl.
UG-146 PBS Professional 19.2.3 User’s Guide

8

Job Arrays

8.1 Advantages of Job Arrays

PBS provides job arrays, which are useful for collections of almost-identical jobs. Each job in a job array is called a
“subjob”. Subjobs are scheduled and treated just like normal jobs, with the exceptions noted in this chapter. You can
group closely related work into a set so that you can submit, query, modify, and display the set as a unit. Job arrays are
useful where you want to run the same program over and over on different input files. PBS can process a job array more
efficiently than it can the same number of individual normal jobs. Job arrays are suited for SIMD operations, for exam-
ple, parameter sweep applications, rendering in media and entertainment, EDA simulations, and forex (historical data).

8.2 Glossary

Job array identifier

The identifier returned upon success when submitting a job array.

Job array range

A set of subjobs within a job array. When specifying a range, indices used must be valid members of the job
array’s indices.

Sequence number

The numeric part of a job or job array identifier, e.g. 1234.

Subjob

Individual entity within a job array (e.g. 1234[7], where 1234[] is the job array itself, and 7 is the index) which
has many properties of a job as well as additional semantics (defined below.)

Subjob index

The unique index which differentiates one subjob from another. This must be a non-negative integer.

8.3 Description of Job Arrays

A job array is a compact representation of two or more jobs. A job that is part of a job array is called a “subjob”. Each
subjob in a job array is treated exactly like a normal job, except for any differences noted in this chapter.

8.3.1 Job Script for Job Arrays

All subjobs in a job array share a single job script, including the PBS directives and the shell script portion. The job
script is run once for each subjob.

The job script may invoke different commands based on the subjob index. The commands of course may be scripts them-
selves if the script is setup correctly and is marked executable. This could be done by naming different commands with
the subjob index as in your example or by "if" statements in the script.
PBS Professional 19.2.3 User’s Guide UG-147

Chapter 8 Job Arrays
8.3.2 Attributes and Resources for Job Arrays

All subjobs have the same attributes, including resource requirements and limits.

The same job script runs for each subjob, so each subjob gets the same attributes and resources. If the job script calls
other scripts or commands, those scripts or commands cannot change the attributes and resources for individual subjobs,
because PBS stops processing directives when it starts processing commands.

8.3.3 Scheduling Job Arrays and Subjobs

The scheduler handles each subjob in a job array as a separate job. All subjobs within a job array have the same schedul-
ing priority.

8.3.3.1 Starving

A job array’s starving status is based on the queued portion of the array. This means that if there is a queued subjob
which is starving, the job array is starving. A running subjob retains the starving status it had when it was started.

8.3.4 Identifier Syntax

The sequence number (1234 in 1234[].server) is unique, so that jobs and job arrays cannot share a sequence number. The
job identifiers of the subjobs in the same job array are the same except for their indices. Each subjob has a unique index.
You can refer to job arrays or parts of job arrays using the following syntax forms:

• The job array object itself: The format is <sequence number>[] or <sequence number>[].<server>.<domain>.com

Example: 1234[].myserver or 1234[]

• A single subjob with index M: The format is <sequence number>[M] or <sequence num-
ber>[M].<server>.<domain>.com

Example where M=17: 1234[17].myserver or 1234[17]

• A range of subjobs of a job array: The format is <sequence number>[start-end[:step]] or <sequence num-
ber>[start-end[:step]].<server>.<domain>.com

Example where we start at 2, end at 8, and the step is 3: 1234[2-8:3].myserver or 1234[2-8:3]

8.3.4.1 Examples of Using Identifier Syntax

1234[].server.domain.com Full job array identifier

1234[] Short job array identifier

1234[73] Subjob identifier of the 73rd index of job array 1234[]

1234 Error, if 1234[] is a job array

1234.server.domain.com Error, if 1234[].server.domain.com is a job array

8.3.4.2 Shells and Array Identifiers

Since some shells, for example csh and tcsh, read “[” and “]” as shell metacharacters, job array names and subjob
names must be enclosed in double quotes for all PBS commands.

Example:

qdel "1234.myhost[5]"

qdel "1234.myhost[]"
UG-148 PBS Professional 19.2.3 User’s Guide

Job Arrays Chapter 8
Single quotes will work, except where you are using shell variable substitution.

8.3.5 Special Attributes for Job Arrays

Job arrays and subjobs have all of the attributes of a job. In addition, they have the following when appropriate. These
attributes are read-only.

8.3.6 Job Array States

The state of subjobs in the same job array can be different. See “Job Array States” on page 353 of the PBS Professional
Reference Guide and “Subjob States” on page 354 of the PBS Professional Reference Guide.

8.3.7 PBS Environmental Variables for Job Arrays

8.3.8 Accounting

Job accounting records for job arrays and subjobs are the same as for jobs. When a job array has been moved from one
server to another, the subjob accounting records are split between the two servers.

Subjobs do not have “Q” records.

Table 8-1: Job Array Attributes

Name Type
Applies

To
Value

array Boolean Job array True if item is job array

array_id String Subjob Subjob’s job array identifier

array_index String Subjob Subjob’s index number

array_state_count String Job array Similar to state_count attribute for server and queue
objects. Lists number of subjobs in each state.

array_indices_remaining String Job array List of indices of subjobs still queued. Range or list of
ranges, e.g. 500, 552, 596-1000

array_indices_submitted String Job array Complete list of indices of subjobs given at submission
time. Given as range, e.g. 1-100

Table 8-2: PBS Environmental Variables for Job Arrays

Environment
Variable Name

Used For Description

PBS_ARRAY_INDEX Subjobs Subjob index in job array, e.g. 7

PBS_ARRAY_ID Subjobs Identifier for a job array. Sequence number of job array, e.g.
1234[].myserver

PBS_JOBID Jobs, subjobs Identifier for a job or a subjob. For subjob, sequence number and subjob
index in brackets, e.g. 1234[7].myserver
PBS Professional 19.2.3 User’s Guide UG-149

Chapter 8 Job Arrays
8.3.9 Prologues and Epilogues

If defined, prologues and epilogues run at the beginning and end of each subjob, but not for the array object.

8.3.10 The Rerunnable Flag and Job Arrays

Job arrays are required to be rerunnable. PBS will not accept a job array that is marked as not rerunnable. You can sub-
mit a job array without specifying whether it is rerunnable, and PBS will automatically mark it as rerunnable.

8.4 Submitting a Job Array

8.4.1 Job Array Submission Syntax

You submit a job array through a single command. You specify subjob indices at submission. You can specify any of the
following:

• A contiguous range, e.g. 1 through 100

• A range with a stepping factor, e.g. every second entry in 1 through 100 (1, 3, 5, ... 99)

Syntax for submitting a job array:

qsub -J <index start>-<index end>[:<stepping factor>]

where

index start is the lowest index number in the range

index end is the highest index number in the range

stepping factor is the optional difference between index numbers

The index start and end must be whole numbers, and the stepping factor must be a positive integer. The index end must
be greater than the index start. If the index end is not a multiple of the stepping factor above the index start, it will not be
used as an index value, and the highest index value used will be lower than the index end. For example, if index start is
1, index end is 8, and the stepping factor is 3, the index values are 1, 4, and 7.

8.4.2 Examples of Submitting Job Arrays

Example 8-1: To submit a job array of 10,000 subjobs, with indices 1, 2, 3, ... 10000:

$ qsub -J 1-10000 job.scr

1234[].server.domain.com

Example 8-2: To submit a job array of 500 subjobs, with indices 500, 501, 502, ... 1000:

$ qsub -J 500-1000 job.scr

1235[].server.domain.com

Example 8-3: To submit a job array with indices 1, 3, 5 ... 999:

$ qsub -J 1-1000:2 job.scr

1236[].server.domain.com
UG-150 PBS Professional 19.2.3 User’s Guide

Job Arrays Chapter 8
8.4.3 File Staging for Job Arrays

When preparing files to be staged for a job array, plan on naming the files so that they match the index numbers of the
subjobs. For example, inputfile3 is meant to be used by the subjob with index value 3.

To stage files for job arrays, you use the same mechanism as for normal jobs, but include a variable to specify the subjob
index. This variable is named array_index.

8.4.3.1 File Staging Syntax for Job Arrays

You can specify files to be staged in before the job runs and staged out after the job runs. Format:

qsub -W stagein=<stagein file list> -W stageout=<stageout file list>

You can use these as options to qsub, or as directives in the job script.

For both stagein and stageout, the file list has the form:

<execution path>^array_index^@<storage host>:<storage path>^array_index^[,...]

The name <execution path><index number> is the name of the file in the job’s staging and execution directory (on the
execution host). The execution path can be relative to the job’s staging and execution directory, or it can be an absolute
path.

The ‘@’ character separates the execution specification from the storage specification.

The name <storage path><index number> is the file name on the host specified by storage host. For stagein, this is the
location where the input files come from. For stageout, this is where the output files end up when the job is done. You
must specify a storage host. The name can be absolute, or it can be relative to your home directory on the storage
machine.

For stagein, the direction of travel is from storage path to execution path.

For stageout, the direction of travel is from execution path to storage path.

When staging more than one set of filenames, separate the filenames with a comma and enclose the entire list in double
quotes.

8.4.3.2 Job Array Staging Syntax on Windows

In Windows the stagein and stageout string must be contained in double quotes when using ^array_index^.

Example of a stagein:

qsub -W stagein="foo.^array_index^@host-1:C:\WINNT\Temp\foo.^array_index^" -J 1-5 stage_script

Example of a stageout:

qsub -W stageut="C:\WINNT\Temp\foo.^array_index^@host-1:Q:\my_username\foo. ̂ array_index^_out" -J
1-5 stage_script

8.4.3.3 Job Array File Staging Caveats

We recommend using an absolute pathname for the storage path. Remember that the path to your home directory may be
different on each machine, and that when using sandbox = PRIVATE, you may or may not have a home directory on
all execution machines.

8.4.3.4 Examples of Staging for Job Arrays

Example 8-4: Simple example:

Storage path: store:/film
PBS Professional 19.2.3 User’s Guide UG-151

Chapter 8 Job Arrays
Data files used as input: frame1, frame2, frame3

execution path: pix

Executable: a.out

For this example, a.out produces frame2.out from frame2.

#PBS -W stagein=pix/in/frame^array_index^@store:/film/frame^array_index^

#PBS- W stageout=pix/out/frame^array_index^.out @store:/film/frame^array_index^.out

#PBS -J 1-3 a.out frame$PBS_ARRAY_INDEX ./in ./out

Note that the stageout statement is all one line.

The result is that your directory named “film” contains the original files frame1, frame2, frame3, plus the new
files frame1.out, frame2.out, and frame3.out.

Example 8-5: In this example, we have a script named ArrayScript which calls scriptlet1 and scriptlet2.

All three scripts are located in /homedir/testdir.

#!/bin/sh

#PBS -N ArrayExample

#PBS -J 1-2

echo "Main script: index " $PBS_ARRAY_INDEX

/homedir/testdir/scriptlet$PBS_ARRAY_INDEX

In our example, scriptlet1 and scriptlet2 simply echo their names. We run ArrayScript using the qsub com-
mand:

qsub ArrayScript

Example 8-6: In this example, we have a script called StageScript. It takes two input files, dataX and extraX,
and makes an output file, newdataX, as well as echoing which iteration it is on. The dataX and extraX files
will be staged from inputs to work, then newdataX will be staged from work to outputs.

#!/bin/sh

#PBS -N StagingExample

#PBS -J 1-2

#PBS -W stagein=”/homedir/work/data^array_index^@host1:/homedir/inputs/data^array_index^, \

/homedir/work/extra^array_index^ @host1:/homedir/inputs/extra^array_index^”

#PBS -W stageout=/homedir/work/newdata^array_index^@host1:/homedir/outputs/newdata^array_index^

echo "Main script: index " $PBS_ARRAY_INDEX

cd /homedir/work

cat data$PBS_ARRAY_INDEX extra$PBS_ARRAY_INDEX >> newdata$PBS_ARRAY_INDEX

Execution path:

/homedir/work

Storage host:

host1

Storage path for inputs (original data files dataX and extraX):

/homedir/inputs

Storage path for results (output of computation newdataX):

/homedir/outputs

StageScript resides in /homedir/testdir. In that directory, we can run it by typing:

qsub StageScript
UG-152 PBS Professional 19.2.3 User’s Guide

Job Arrays Chapter 8
It will run in /homedir, our home directory, which is why the line

“cd /homedir/work”

 is in the script.

Example 8-7: In this example, we have the same script as before, but we will run it in a staging and execution directory
created by PBS. StageScript takes two input files, dataX and extraX, and makes an output file, newdataX, as
well as echoing which iteration it is on. The dataX and extraX files will be staged from inputs to the staging
and execution directory, then newdataX will be staged from the staging and execution directory to outputs.

#!/bin/sh

#PBS -N StagingExample

#PBS -J 1-2

#PBS -W stagein=”data^array_index^@host1:/homedir/inputs/data^array_index^, \

extra^array_index^@host1:/homedir/inputs/extra^array_index^”

#PBS -W stageout=newdata^array_index^@host1:/homedir/outputs/newdata^array_index^

echo "Main script: index " $PBS_ARRAY_INDEX

cat data$PBS_ARRAY_INDEX extra$PBS_ARRAY_INDEX >> newdata$PBS_ARRAY_INDEX

Execution path (directory): created by PBS; we don’t know the name

Storage host:

host1

Storage path for inputs (original data files dataX and extraX):

/homedir/inputs

Storage path for results (output of computation newdataX):

/homedir/outputs

StageScript resides in /homedir/testdir. In that directory, we can run it by typing:

qsub StageScript

It will run in the staging and execution directory created by PBS. See section 3.2, “Input/Output File Staging”, on
page 33.

8.4.4 Filenames for Standard Output and Standard Error

The name for stdout for a subjob defaults to <job name>.o<sequence number>.<index>, and the name for stderr
for a subjob defaults to <job name>.e<sequence number>.<index>.

Example 8-8: The job is named “fixgamma” and the sequence number is “1234”.

The subjob with index 7 is 1234[7].<server name>. For this subjob, stdout and stderr are named fix-
gamma.o1234.7 and fixgamma.e1234.7.

8.4.5 Job Array Dependencies

Job dependencies are supported for the following relationships:

• Between job arrays and job arrays

• Between job arrays and jobs

• Between jobs and job arrays
PBS Professional 19.2.3 User’s Guide UG-153

Chapter 8 Job Arrays
8.4.5.1 Caveats for Job Array Dependencies

Job dependencies are not supported for subjobs or ranges of subjobs.

8.4.6 Job Array Exit Status

The exit status of a job array is determined by the status of each of the completed subjobs. It is only available when all
valid subjobs have completed. The individual exit status of a completed subjob is passed to the epilogue, and is available
in the ‘E’ accounting log record of that subjob.

8.4.6.1 Making qsub Wait Until Job Array Finishes

Blocking qsub waits until the entire job array is complete, then returns the exit status of the job array.

8.4.6.2 Caveats for Job Array Exit Status

Subjob exit status is available only as long as the subjob is in job history. When a subjob is not in job history, a failed or
terminated subjob will show an exit status of Finished, instead of failed or terminated.

8.4.7 Caveats for Submitting Job Arrays

8.4.7.1 No Interactive Job Submission of Job Arrays

Interactive submission of job arrays is not allowed.

8.5 Viewing Status of a Job Array

You can use the qstat command to query the status of a job array. The default output is to list the job array in a single
line, showing the job array identifier. You can combine options.

You can use the -f option to the qstat command to see all of a subjob’s attributes.

Table 8-3: Job Array Exit Status

Exit Status Meaning

0 All subjobs of the job array returned an exit status of 0. No PBS error occurred. Deleted subjobs are
not considered

1 At least 1 subjob returned a non-zero exit status. No PBS error occurred.

2 A PBS error occurred.
UG-154 PBS Professional 19.2.3 User’s Guide

Job Arrays Chapter 8
 To show the state of all running subjobs, use -t -r. To show the state of subjobs only, not job arrays, use -t -J.

8.5.1 Example of Viewing Job Array Status

We run an example job and an example job array, on a machine with 2 processors:

demoscript:

#!/bin/sh

#PBS -N JobExample

sleep 60

arrayscript:

#!/bin/sh

#PBS -N ArrayExample

#PBS -J 1-5

sleep 60

We run these scripts using qsub:

qsub arrayscript

1235[].host

qsub demoscript

1236.host

Table 8-4: Job Array and Subjob Options to qstat

Option Result

-t Shows state of job array object and subjobs.

Also shows state of jobs.

-J Shows state only of job arrays.

-p Prints the default display, with column for Percentage Completed.

For a job array, this is the number of subjobs completed or deleted divided by the total number of subjobs.
For a job, it is time used divided by time requested.
PBS Professional 19.2.3 User’s Guide UG-155

Chapter 8 Job Arrays
We query using various options to qstat:

qstat

Job id Name User Time Use S Queue

----------- ------------ ---------- -------- - -----

1235[].host ArrayExample user1 0 B workq

1236.host JobExample user1 0 Q workq

qstat -J

Job id Name User Time Use S Queue

----------- ------------ ---------- -------- - -----

1235[].host ArrayExample user1 0 B workq

qstat -p

Job id Name User % done S Queue

----------- ------------ ---------- ------- - -----

1235[].host ArrayExample user1 0 B workq

1236.host JobExample user1 -- Q workq

qstat -t

Job id Name User Time Use S Queue

----------- ------------ ---------- -------- - -----

1235[].host ArrayExample user1 0 B workq

1235[1].host ArrayExample user1 00:00:00 R workq

1235[2].host ArrayExample user1 00:00:00 R workq

1235[3].host ArrayExample user1 0 Q workq

1235[4].host ArrayExample user1 0 Q workq

1235[5].host ArrayExample user1 0 Q workq

1236.host JobExample user1 0 Q workq

qstat -Jt

Job id Name User Time Use S Queue

------------ ------------ ----- -------- - -----

1235[1].host ArrayExample user1 00:00:00 R workq

1235[2].host ArrayExample user1 00:00:00 R workq

1235[3].host ArrayExample user1 0 Q workq

1235[4].host ArrayExample user1 0 Q workq

1235[5].host ArrayExample user1 0 Q workq
UG-156 PBS Professional 19.2.3 User’s Guide

Job Arrays Chapter 8
After the first two subjobs finish:

qstat -Jtp

Job id Name User % done S Queue

------------ ------------ ----- ------ - -----

1235[1].host ArrayExample user1 100 X workq

1235[2].host ArrayExample user1 100 X workq

1235[3].host ArrayExample user1 -- R workq

1235[4].host ArrayExample user1 -- R workq

1235[5].host ArrayExample user1 -- Q workq

qstat -pt

Job id Name User % done S Queue

------------ ------------ ----- ------ - -----

1235[].host ArrayExample user1 40 B workq

1235[1].host ArrayExample user1 100 X workq

1235[2].host ArrayExample user1 100 X workq

1235[3].host ArrayExample user1 -- R workq

1235[4].host ArrayExample user1 -- R workq

1235[5].host ArrayExample user1 -- Q workq

1236.host JobExample user1 -- Q workq

Now if we wait until only the last subjob is still running:

qstat -rt

 Req'd Req'd Elap

Job ID Username Queue Jobname SessID NDS TSK Memory Time S Time

----------- ------ ----- --------- ---- --- --- ------ ---- - -----

1235[5].host user1 workq ArrayExamp 3048 -- 1 -- -- R 00:00

1236.host user1 workq JobExample 3042 -- 1 -- -- R 00:00

qstat -Jrt

 Req'd Req'd Elap

Job ID Username Queue Jobname SessID NDS TSK Memory Time S Time

----------- -------- ----- --------- ---- --- --- ------ ---- - -----

1235[5].host user1 workq ArrayExamp 048 -- 1 -- -- R 00:01
PBS Professional 19.2.3 User’s Guide UG-157

Chapter 8 Job Arrays
8.6 Using PBS Commands with Job Arrays

The following table shows how you can or cannot use PBS commands with job arrays, subjobs or ranges:

8.6.1 Deleting a Job Array

The qdel command will take a job array identifier, subjob identifier or job array range. The indicated object(s) are
deleted, including any currently running subjobs. Running subjobs are treated like running jobs. Subjobs not running are
deleted and never run.

By default, one email is sent per deleted subjob, so deleting a job array of 5000 subjobs results in 5000 emails being sent,
unless you are suppressing the number of emails sent. See “-Wsuppress_email=<N>” on page 138 of the PBS Profes-
sional Reference Guide.

8.6.2 Altering a Job Array

The qalter command can only be used on a job array object, not on subjobs or ranges. Job array attributes are the
same as for jobs.

8.6.3 Moving a Job Array

The qmove command can only be used with job array objects, not with subjobs or ranges. Job arrays can only be moved
from one server to another if they are in the ‘Q’, ‘H’, or ‘W’ states, and only if there are no running subjobs. The state of
the job array object is preserved in the move. The job array will run to completion on the new server.

As with jobs, a qstat on the server from which the job array was moved does not show the job array. A qstat on the
job array object is redirected to the new server.

Table 8-5: Using PBS Commands with Job Arrays

Argument to Command

Command Array[]: Array Object
Array[Range]: Specified

Range of Subjobs
Array[Index]:

Specified Subjob

qalter Array object erroneous erroneous

qdel Array object & Running subjobs Running subjobs in specified range Specified subjob

qhold Array object & Queued subjobs erroneous erroneous

qmove Array object & Queued subjobs erroneous erroneous

qmsg erroneous erroneous erroneous

qorder Array object erroneous erroneous

qrerun Running and finished subjobs Running subjobs in specified range Specified subjob

qrls Array object & Queued subjobs erroneous erroneous

qsig Running subjobs Running subjobs in specified range Specified subjob

qstat Array object Specified range of subjobs Specified subjob

tracejob erroneous erroneous Specified subjob
UG-158 PBS Professional 19.2.3 User’s Guide

Job Arrays Chapter 8
8.6.4 Holding a Job Array

The qhold command can only be used with job array objects, not with subjobs or ranges. A hold can be applied to a
job array only from the ‘Q’, ‘B’ or ‘W’ states. This puts the job array in the ‘H’, held, state. If any subjobs are running,
they will run to completion. No queued subjobs are started while in the ‘H’ state.

8.6.5 Releasing a Job Array

The qrls command can only be used with job array objects, not with subjobs or ranges. If the job array was in the ‘Q’
or ‘B’ state, it is returned to that state. If it was in the ‘W’ state, it is returned to that state, unless its waiting time was
reached, in which case it goes to the ‘Q’ state.

8.6.6 Selecting Job Arrays

The default behavior of qselect is to return the job array identifier, without returning subjob identifiers.

The qselect command does not return any job arrays when the state selection (-s) option restricts the set to ‘R’, ‘S’,
‘T’ or ‘U’, because a job array will never be in any of these states. However, you can use qselect to return a list of
subjobs by using the -t option.

You can combine options to qselect. For example, to restrict the selection to subjobs, use both the -J and the -T
options. To select only running subjobs, use -J -T -sR.

8.6.7 Ordering Job Arrays in the Queue

The qorder command can only be used with job array objects, not on subjobs or ranges. This changes the queue order
of the job array in association with other jobs or job arrays in the queue.

8.6.8 Requeueing a Job Array

The qrerun command will take a job array identifier, subjob identifier or job array range. If a job array identifier is
given as an argument, it is returned to its initial state at submission time, or to its altered state if it has been qaltered. All
of that job array’s subjobs are requeued, which includes those that are currently running, and those that are completed
and deleted. If a subjob or range is given, those subjobs are requeued as jobs would be.

8.6.9 Signaling a Job Array

If a job array object, subjob or job array range is given to qsig, all currently running subjobs within the specified set are
sent the signal.

Table 8-6: Options to qselect for Job Arrays

Option Selects Result

(none) jobs, job arrays Shows job and job array identifiers

-J job arrays Shows only job array identifiers

-T jobs, subjobs Shows job and subjob identifiers
PBS Professional 19.2.3 User’s Guide UG-159

Chapter 8 Job Arrays
8.6.10 Sending Messages to Job Arrays

The qmsg command is not supported for job arrays.

8.6.11 Getting Log Data on Job Arrays

The tracejob command can be run on job arrays and individual subjobs. When tracejob is run on a job array or a
subjob, the same information is displayed as for a job, with additional information for a job array. Note that subjobs do
not exist until they are running, so tracejob will not show any information until they are. When tracejob is run
on a job array, the information displayed is only that for the job array object, not the subjobs. Job arrays themselves do
not produce any MoM log information. Running tracejob on a job array gives information about why a subjob did
not start.

8.6.12 Caveats for Using PBS Commands with Job Arrays

8.6.12.1 Shells and PBS Commands with Job Arrays

Some shells such as csh and tcsh use the square bracket (“[”, “]”) as a metacharacter. When using one of these shells,
and a PBS command taking subjobs, job arrays or job array ranges as arguments, the subjob, job array or job array range
must be enclosed in double quotes.

8.7 Job Array Caveats

8.7.1 Job Arrays Required to be Rerunnable

Job arrays are required to be rerunnable, and are rerunnable by default.

8.7.2 Resources Same for All Subjobs

You cannot combine jobs into an array that have different hardware requirements, i.e. different select statements.

8.7.3 Checkpointing Not Supported for Job Arrays

Checkpointing is not supported for job arrays. On systems that support checkpointing, subjobs are not checkpointed,
instead they run to completion.

8.7.4 Caveats for Job Array Exit Status

Subjob exit status is available only as long as the subjob is in job history. When a subjob is not in job history, a failed or
terminated subjob will show an exit status of Finished, instead of failed or terminated.
UG-160 PBS Professional 19.2.3 User’s Guide

9

Working with PBS Jobs

9.1 Using Job History

PBS Professional can provide job history information, including what the submission parameters were, whether the job
started execution, whether execution succeeded, whether staging out of results succeeded, and which resources were
used.

PBS can keep job history for jobs which have finished execution, were deleted, or were moved to another server.

9.1.1 Definitions

Moved jobs

Jobs which were moved to another server

Finished jobs

Jobs whose execution is done, for any reason:

• Jobs which finished execution successfully and exited

• Jobs terminated by PBS while running

• Jobs whose execution failed because of system or network failure

• Jobs which were deleted before they could start execution

9.1.2 Job History Information

PBS can keep all job attribute information, including the following:

• Submission parameters

• Whether the job started execution

• Whether execution succeeded

• Whether staging out of results succeeded

• Which resources were used

PBS keeps job history for the following jobs:

• Jobs that are running at another server

• Jobs that have finished execution

• Jobs that were deleted

• Jobs that were moved to another server

While a job is running, you can see information about it. After a job has finished or been deleted, its history information
is preserved for the specified duration. The administrator chooses a duration for preservation of job history information
after each job has finished or been deleted. PBS periodically checks each finished job, and deletes job history for those
whose history has been preserved for longer than the specified duration.

Subjobs are not considered finished jobs until the parent array job is finished, which happens when all of its subjobs have
terminated execution.
PBS Professional 19.2.3 User’s Guide UG-161

Chapter 9 Working with PBS Jobs
9.1.2.1 Working With Moved Jobs

You can use the following commands with moved jobs. They will function as they do with normal jobs.

qalter

qhold

qmove

qmsg

qorder

qrerun

qrls

qrun

qsig

While a moved job is running, its state is M. When a moved job finishes, its substate becomes 92. See “Job States” on
page 351 of the PBS Professional Reference Guide.

9.1.2.2 PBS Commands and Finished Jobs

The commands listed above cannot be used with finished jobs, whether they finished at the local server or a remote
server. These jobs are no longer running; PBS is storing their information, and this information cannot be altered. Trying
to use one of the above commands with a finished job results in the following error message:

<command name>: Job <job ID> has finished

9.2 Modifying Job Attributes

Most attributes can be changed by the owner of the job (or a manager or operator) while the job is still queued. However,
once a job begins execution, the only values that can be modified are cputime, walltime, and run_count. These can
only be reduced.

When the qalter -l option is used to alter the resource list of a queued job, it is important to understand the interac-
tions between altering the select directive and job limits.

If the job was submitted with an explicit "-l select=", then vnode-level resources must be qaltered using the "-l
select=" form. In this case a vnode level resource RES cannot be qaltered with the "-l <resource>" form.

For example:

Submit the job:

% qsub -l select=1:ncpus=2:mem=512mb jobscript

Job’s ID is 230

qalter the job using "-l RES" form:

% qalter -l ncpus=4 230

Error reported by qalter:

qalter: Resource must only appear in "select"

specification when select is used: ncpus 230
UG-162 PBS Professional 19.2.3 User’s Guide

Working with PBS Jobs Chapter 9
qalter the job using the "-l select=" form:

% qalter -l select=1:ncpus=4:mem=512mb 230

No error reported by qalter:

%

9.2.1 Changing the Selection Directive

If the selection directive is altered, the job limits for any consumable resource in the directive are also modified.

For example, if a job is queued with the following resource list:

select=2:ncpus=1:mem=5gb

job limits are set to ncpus=2, mem=10gb.

If the select statement is altered to request:

select=3:ncpus=2:mem=6gb

then the job limits are reset to ncpus=6 and mem=18gb

9.2.2 Changing the Job-wide Limit

If the job-wide limit is modified, the corresponding resources in the selection directive are not modified. It would be
impossible to determine where to apply the changes in a compound directive.

Reducing a job-wide limit to a new value less than the sum of the resource in the directive is strongly discouraged. This
may produce a situation where the job is aborted during execution for exceeding its limits. The actual effect of such a
modification is not specified.

A job's walltime may be altered at any time, except when the job is in the Exiting state, regardless of the initial value.

If a job is queued, requested modifications must still fit within the queue's and server's job resource limits. If a requested
modification to a resource would exceed the queue's or server's job resource limits, the resource request will be rejected.

Resources are modified by using the -l option, either in chunks inside of selection statements, or in job-wide modifica-
tions using resource_name=value pairs. The selection statement is of the form:

-l select=[N:]chunk[+[N:]chunk ...]

where N specifies how many of that chunk, and a chunk is of the form:

<resource name>=<value>[:<resource name>=<value> ...]

Job-wide <resource name>=<value> modifications are of the form:

-l <resource name>=<value>[,<resource name>=<value> ...]

Placement of jobs on vnodes is changed using the place statement:

-l place=<modifier>[:<modifier>]

where modifier is any combination of group, excl, exclhost, and/or one of free|pack|scatter|vscatter.

The usage syntax for qalter is:

qalter <job resources> <job list>
PBS Professional 19.2.3 User’s Guide UG-163

Chapter 9 Working with PBS Jobs
The following examples illustrate how to use the qalter command. First we list all the jobs of a particular user. Then
we modify two attributes as shown (increasing the wall-clock time from 20 to 25 minutes, and changing the job name
from “airfoil” to “engine”):

qstat -u barry

 Req'd Elap

Job ID User Queue Jobname Sess NDS TSK Mem Time S Time

-------- ------ ----- ------- ---- --- --- --- ---- - ----

51.south barry workq airfoil 930 -- 1 -- 0:16 R 0:01

54.south barry workq airfoil -- -- 1 -- 0:20 Q --

qalter -l walltime=20:00 -N engine 54

qstat -a 54

 Req'd Elap

Job ID User Queue Jobname Sess NDS TSK Mem Time S Time

-------- ------ ----- ------- ---- --- --- --- ---- - ----

54.south barry workq engine -- -- 1 -- 0:25 Q --

The qalter command can be used on job arrays, but not on subjobs or ranges of subjobs. When used with job arrays,
any job array identifiers must be enclosed in double quotes, e.g.:

qalter -l walltime=25:00 "1234[].south"

You cannot use the qalter command (or any other command) to alter a custom resource which has been created to be
invisible or unrequestable. See section 4.3.8, “Caveats and Restrictions on Requesting Resources”, on page 58.

For more information, see “qalter” on page 124 of the PBS Professional Reference Guide.

9.2.2.1 Caveats

Be careful when using a Boolean resource as a job-wide limit.

9.3 Deleting Jobs

PBS provides the qdel command for deleting jobs. The qdel command deletes jobs in the order in which their job
identifiers are presented to the command. A batch job may be deleted by its owner, a PBS operator, or a PBS administra-
tor. Unless you are an administrator or an operator, you can delete only your own jobs.

To delete a queued, held, running, or suspended job:

qdel <job ID>

Example:

qdel 51

qdel 1234[].server

Job array identifiers must be enclosed in double quotes.

9.3.1 Deleting Jobs with Force

You can delete a job whether or not its execution host is reachable, and whether or not it is in the process of provisioning:

qdel -W force <job ID>
UG-164 PBS Professional 19.2.3 User’s Guide

Working with PBS Jobs Chapter 9
9.3.2 Deleting Finished Jobs

By default, the qdel command does not affect finished jobs. You can use the qdel -x option to delete job histories.
This option also deletes any specified jobs that are queued, running, held, suspended, finished, or moved. When you use
this, you are deleting the job and its history in one step. If you use the qdel command without the -x option, you delete
the job, but not the job history, and you cannot delete a finished job.

To delete a finished job, whether or not it was moved:

qdel -x <job ID>

If you try to delete a finished job without the -x option, you will get the following error:

qdel: Job <job ID> has finished

9.3.3 Deleting Moved Jobs

You can use the qdel -x option to delete jobs that are queued, running, held, suspended, finished, or moved.

To delete a job that was moved:

qdel <job ID sequence number>.<original server>

To delete a job that was moved, and then finished:

qdel -x <job ID>

9.3.4 Restricting Number of Emails

By default, mail is sent for each job or subjob you delete. Use the following option to qdel to specify a limit on emails
sent:

qdel -Wsuppress_email=<N>

See section 2.5.1.3, “Restricting Number of Job Deletion Emails”, on page 27.

9.4 Sending Messages to Jobs

To send a message to a job is to write a message string into one or more output files of the job. Typically this is done to
leave an informative message in the output of the job. Such messages can be written using the qmsg command.

You can send messages to running jobs only.

The usage syntax of the qmsg command is:

qmsg [-E][-O] <message string> <job ID>

Example:

qmsg -O "output file message" 54

qmsg -O "output file message" "1234[].server"

Job array identifiers must be enclosed in double quotes.

The -E option writes the message into the error file of the specified job(s). The -O option writes the message into the out-
put file of the specified job(s). If neither option is specified, the message will be written to the error file of the job.
PBS Professional 19.2.3 User’s Guide UG-165

Chapter 9 Working with PBS Jobs
The first operand, message_string, is the message to be written. If the string contains blanks, the string must be quoted. If
the final character of the string is not a newline, a newline character will be added when written to the job’s file. All
remaining operands are job IDs which specify the jobs to receive the message string. For example:

qmsg -E "hello to my error (.e) file" 55

qmsg -O "hello to my output (.o) file" 55

qmsg "this too will go to my error (.e) file" 55

9.5 Sending Signals to Jobs

You can use the qsig command to send a signal to your job. The signal is sent to all of the job’s processes.

Usage syntax of the qsig command is:

qsig [-s <signal>] <job ID>

Job array job IDs must be enclosed in double quotes.

If the -s option is not specified, SIGTERM is sent. If the -s option is specified, it declares which signal is sent to the job.
The signal argument is either a signal name, e.g. SIGKILL, the signal name without the SIG prefix, e.g. KILL, or an
unsigned signal number, e.g. 9. The signal name SIGNULL is allowed; the server will send the signal 0 to the job which
will have no effect. Not all signal names will be recognized by qsig. If it doesn’t recognize the signal name, try issuing
the signal number instead. The request to signal a batch job will be rejected if:

• You are not authorized to signal the job

• The job is not in the running state

• The requested signal is not supported by the execution host

• The job is exiting

• The job is provisioning

Two special signal names, “suspend” and “resume”, (note, all lower case), are used to suspend and resume jobs. When
suspended, a job continues to occupy system resources but is not executing and is not charged for walltime. Manager or
operator privilege is required to suspend or resume a job.

The signal TERM is useful, because it is ignored by shells, but you can trap it and do useful things such as write out sta-
tus.

The three examples below all send a signal 9 (SIGKILL) to job 34:

qsig -s SIGKILL 34

qsig -s KILL 34

If you want to trap the signal in your job script, the signal must be trapped by all of the job’s shells.

On most Linux systems the command “kill -l” (that’s ‘minus ell’) will list all the available signals.

9.6 Changing Order of Jobs

PBS provides the qorder command to change the order of two jobs, within or across queues. To order two jobs is to
exchange the jobs’ positions in the queue or queues in which the jobs reside. If job1 is at position 3 in queue A and job2
is at position 4 in queue B, qordering them will result in job1 being in position 4 in queue B and job2 being in position 3
in queue A.

No attribute of the job (such as Priority) is changed. The impact of changing the order within the queue(s) is dependent
on local job scheduling policy; contact your systems administrator for details.
UG-166 PBS Professional 19.2.3 User’s Guide

Working with PBS Jobs Chapter 9
Usage of the qorder command is:

qorder <job ID>1 <job ID2>

Job array identifiers must be enclosed in double quotes.

Both operands are job IDs which specify the jobs to be exchanged.

qstat -u bob

 Req'd Elap

Job ID User Queue Jobname Sess NDS TSK Mem Time S Time

-------- ------ ----- ------- ---- --- --- --- ---- - ----

54.south bob workq twinkie -- -- 1 -- 0:20 Q --

63[].south bob workq airfoil -- -- 1 -- 0:13 Q --

qorder 54 "63[]"

qstat -u bob

 Req'd Elap

Job ID User Queue Jobname Sess NDS TSK Mem Time S Time

-------- ------ ----- ------- ---- --- --- --- ---- - ----

63[].south bob workq airfoil -- -- 1 -- 0:13 Q --

54.south bob workq twinkie -- -- 1 -- 0:20 Q --

9.6.1 Restrictions

• The two jobs must be located at the same server, and both jobs must be owned by you. However, a PBS Manager or
Operator can exchange any jobs.

• A job in the running state cannot be reordered.

• The qorder command can be used with entire job arrays, but not on subjobs or ranges. Reordering a job array
changes the queue order of the job array in relation to other jobs or job arrays in the queue.

9.7 Moving Jobs Between Queues

PBS provides the qmove command to move jobs between different queues (even queues on different servers). To move
a job is to remove the job from the queue in which it resides and instantiate the job in another queue.

A job in the running state cannot be moved.

The usage syntax of the qmove command is:

qmove <destination> <job ID(s)>

Job array <job ID>s must be enclosed in double quotes.

The first operand is the new destination for

<queue>

@<server>

<queue>@<server>
PBS Professional 19.2.3 User’s Guide UG-167

Chapter 9 Working with PBS Jobs
If the destination operand describes only a queue, then qmove will move jobs into the queue of the specified name at the
job’s current server. If the destination operand describes only a server, then qmove will move jobs into the default queue
at that server. If the destination operand describes both a queue and a server, then qmove will move the jobs into the
specified queue at the specified server. All following operands are job IDs which specify the jobs to be moved to the new
destination.

The qmove command can only be used with job array objects, not with subjobs or ranges. Job arrays can only be moved
from one server to another if they are in the ‘Q’, ‘H’, or ‘W’ states, and only if there are no running subjobs. The state of
the job array object is preserved in the move. The job array will run to completion on the new server.

As with jobs, a qstat on the server from which the job array was moved will not show the job array. A qstat on the
job array object will be redirected to the new server.

The subjob accounting records will be split between the two servers.
UG-168 PBS Professional 19.2.3 User’s Guide

10

Checking Job & System Status

10.1 Checking Job Status

You can use the qstat command to view job information in the following formats:

• Basic format: minimal summary of jobs

• Alternate format: intermediate listing of job information

• Long format: shows all information about jobs

You can see only the information for which you have the required privilege.

We discuss each format in the following sections. See “qstat” on page 192 of the PBS Professional Reference Guide.

By default, qstat displays information for queued or running jobs only. However, you can tell qstat to display infor-
mation for all jobs, whether they are running, queued, finished, or moved; we cover this in this chapter. Job history is
kept for a period defined by your administrator.

Summary of usage:

Displaying Job Status

Default format:

qstat [-E] [-J] [-p] [-t] [-x] [[<job ID> | <destination>] ...]

Long format:

qstat -f [-F json|dsv [-D <delimiter>]] [-E] [-J] [-p] [-t] [-w] [-x] [[<job ID> | <destination>] ...]

Alternate format:

qstat [-a [-w]| -H | -i | -r] [-E] [-G | -M] [-J] [-n [-1] [-w]] [-s [-1] [-w]] [-t] [-T [-w]] [-u <user list>] [[<job ID> |
<destination>] ...]

Displaying Queue Status

Default format:

qstat -Q [<destination> ...]

Long format:

qstat -Q -f [-F json|dsv [-D <delimiter>]] [-w] [<destination> ...]

Alternate format:

qstat -q [-G | -M] [<destination> ...]

Displaying Server Status

Default format:

qstat -B [<server> ...]

Long format:

qstat -B -f [-F json|dsv [-D <delimiter>]] [-w] [<server> ...]

qstat --version
PBS Professional 19.2.3 User’s Guide UG-169

Chapter 10 Checking Job & System Status
10.1.1 Specifying Jobs to View

You can specify that you want information for a job identifier, a list of job identifiers, or all of the jobs at a destination.

To specify a job identifier, it must be in the following form:

<sequence number>[.<server>][@<server>]

where <sequence number>.<server> is the job identifier assigned at submission. If you do not specify.<server>, the
default server is used. If @<server> is supplied, the request will be for the job identifier currently at that server.

If you specify a destination identifier, it takes one of the following three forms:

<queue>

@<server>

<queue>@<server>

If you specify <queue>, the request is for status of all jobs in that queue at the default server.

If you use the @<server> form, the request is for status of all jobs at that server.

If you specify a full destination identifier, <queue>@<server>, the request is for status of all jobs in the named queue at
the named server.

10.1.2 Viewing Default Job Status

You can use the qstat command to view basic job status, in the default format.

Syntax for simple form and with options:

qstat

qstat [-E] [-J] [-p] [-t] [-x] [[<job ID> | <destination>] ...]

The default display shows the following information:

• The job identifier assigned by PBS

• The job name given by the submitter

• The job owner

• The CPU time used

• The job state; see “Job States” on page 351 of the PBS Professional Reference Guide.

• The queue in which the job resides

The following example illustrates the default display of qstat.

qstat

Job id Name User Time Use S Queue

--------- ----------- ----------- -------- - -----

16.south aims14 user1 0 H workq

18.south aims14 user1 0 W workq

26.south airfoil barry 00:21:03 R workq

27.south airfoil barry 21:09:12 R workq

28.south myjob user1 0 Q workq

29.south tns3d susan 0 Q workq

30.south airfoil barry 0 Q workq

31.south seq_35_3 donald 0 Q workq
UG-170 PBS Professional 19.2.3 User’s Guide

Checking Job & System Status Chapter 10
10.1.3 Viewing Job Status in Alternate Format

You can use the qstat command to view more detail than the basic job information, in the alternate format.

Syntax for simple form and with options:

qstat -a

qstat [-a [-w]| -H | -i | -r] [-E] [-G | -M] [-J] [-n [-1] [-w]] [-s [-1] [-w]] [-t] [-T [-w]] [-u <user list>] [[<job ID> |
<destination>] ...]

The alternate display shows the following fields:

• Job ID

• Job owner

• Queue in which job resides

• Job name

• Session ID (only appears when job is running)

• Number of chunks or vnodes requested

• Number of CPUs requested

• Amount of memory requested

• Amount of CPU time requested, if CPU time requested; if not, amount of wall clock time requested

• State of job

• Amount of CPU time elapsed, if CPU time requested; if not, amount of wall clock time elapsed
qstat -a

 Req'd Elap

Job ID User Queue Jobname Ses NDS TSK Mem Time S Time

-------- ------ ----- ------- --- --- --- --- ---- - ----

16.south user1 workq aims14 -- -- 1 -- 0:01 H --

18.south user1 workq aims14 -- -- 1 -- 0:01 W --

51.south barry workq airfoil 930 -- 1 -- 0:13 R 0:01

52.south user1 workq myjob -- -- 1 -- 0:10 Q --

53.south susan workq tns3d -- -- 1 -- 0:20 Q --

54.south barry workq airfoil -- -- 1 -- 0:13 Q --

55.south donald workq seq_35_ -- -- 1 -- 2:00 Q --

You can use the -1 option to reformat qstat output to a single line. This option can only be used in conjunction with
the -n and/or -s options.
PBS Professional 19.2.3 User’s Guide UG-171

Chapter 10 Checking Job & System Status
10.1.3.1 Display Size in Gigabytes

The “-G” option to qstat displays all jobs at the requested or default server using the alternative display, showing all
size information in gigabytes (GB) rather than the default of smallest displayable units. Note that if the size specified is
less than 1 GB, then the amount if rounded up to 1 GB. For example:

qstat –G

host1:

 Req’d Req’d Elap

Job ID User Queue Jobname Sess NDS TSK Mem Time S Time

--------- ----- ----- ------- ---- --- --- ----- ----- - -----

43.host1 user1 workq STDIN 4693 1 1 -- -- R 00:05

44[].host1 user1 workq STDIN -- 1 1 -- -- Q --

45.host1 user1 workq STDIN -- 1 1 1gb -- Q --

10.1.3.2 Display Size in Megawords

The “-M” option to qstat displays all jobs at the requested (or default) server using the alternative display, showing all
size information in megawords (MW) rather than the default of smallest displayable units. A word is considered to be 8
bytes. For example:

qstat –M

host1:

 Req’d Req’d Elap

Job ID User Queue Jobname Sess NDS TSK Mem Time S Time

---------- ----- ----- ------- ---- --- --- ----- ----- - -----

43.host1 user1 workq STDIN 4693 1 1 -- -- R 00:05

44[].host1 user1 workq STDIN -- 1 1 -- -- Q --

45.host1 user1 workq STDIN -- 1 1 25mw -- Q --

10.1.4 Viewing Job Status in Long Format

You can use the qstat command to view all of the information about a job, including values for its attributes and
resources, in the long format.

Syntax for simple form and with options:

qstat -f

qstat -f [-F json|dsv [-D <delimiter>]] [-E] [-J] [-p] [-t] [-w] [-x] [[<job ID> | <destination>] ...]
UG-172 PBS Professional 19.2.3 User’s Guide

Checking Job & System Status Chapter 10
You can see job status in JSON or delimiter-separated value formats; see section 10.4, “Full Display Options for Job,
Queue, and Server Status”, on page 184. The long format shows the following fields, including job attributes. See “Job
Attributes” on page 318 of the PBS Professional Reference Guide for a description of attributes:

qstat -f 13

Job Id: 13.host1

 Job_Name = STDIN

 Job_Owner = user1@host2

 resources_used.cpupercent = 0

 resources_used.cput = 00:00:00

 resources_used.mem = 2408kb

 resources_used.ncpus = 1

 resources_used.vmem = 12392kb

 resources_used.walltime = 00:01:31

 job_state = R

 queue = workq

 server = host1

 Checkpoint = u

 ctime = Thu Apr 2 12:07:05 2010

 Error_Path = host2:/home/user1/STDIN.e13

 exec_host = host2/0

 exec_vnode = (host3:ncpus=1)

 Hold_Types = n

 Join_Path = n

 Keep_Files = n

 Mail_Points = a

 mtime = Thu Apr 2 12:07:07 2010

 Output_Path = host2:/home/user1/STDIN.o13

 Priority = 0

 qtime = Thu Apr 2 12:07:05 2010

 Rerunable = True

 Resource_List.ncpus = 1

 Resource_List.nodect = 1

 Resource_List.place = free

 Resource_List.select = host=host3

 stime = Thu Apr 2 12:07:08 2010

 session_id = 32704

 jobdir = /home/user1

 substate = 42

 Variable_List = PBS_O_HOME=/home/user1,PBS_O_LANG=en_US.UTF-8,

 PBS_O_LOGNAME=user1,

 PBS_O_PATH=/opt/gnome/sbin:/root/bin:/usr/local/bin:/usr/bin:/usr/X11R

 6/bin:/bin:/usr/games:/opt/gnome/bin:/opt/kde3/bin:/usr/lib/mit/bin:/us

 r/lib/mit/sbin,PBS_O_MAIL=/var/mail/root,PBS_O_SHELL=/bin/bash,

 PBS_O_HOST=host2,PBS_O_WORKDIR=/home/user1,PBS_O_SYSTEM=Linux,

 PBS_O_QUEUE=workq

 comment = Job run at Thu Apr 02 at 12:07 on (host3:ncpus=1)
PBS Professional 19.2.3 User’s Guide UG-173

Chapter 10 Checking Job & System Status
 alt_id = <dom0:job ID xmlns:dom0="http://schemas.microsoft.com/HPCS2008/hpcb

 p">149</dom0:Job ID>

 etime = Thu Apr 2 12:07:05 2010

 Submit_arguments = -lselect=host=host3 -- ping -n 100 127.0.0.1

 executable = <jsdl-hpcpa:Executable>ping</jsdl-hpcpa:Executable>

 argument_list = <jsdl-hpcpa:Argument>-n</jsdl-hpcpa:Argument><jsdl-hpcpa:Ar

 gument>100</jsdl-hpcpa:Argument><jsdl-hpcpa:Argument>127.0.0.1</jsdl-hp

 cpa:Argument>

10.1.4.1 Path Display under Windows

When you view a job in long format that was submitted from a mapped drive, PBS displays the UNC path for the job’s
Output_Path, Error_Path attributes, and the value for PBS_O_WORKDIR in the job’s Variable_List attribute.

When you view a job in long format that was submitted using UNC paths for output and error files, PBS displays the
UNC path for the job’s Output_Path and Error_Path attributes.

10.1.5 Listing Jobs by User

The “-u” option to qstat displays jobs owned by any of a list of user names you specify.

Syntax:

qstat -u <user name>[@<host>][,<user name>[@<host>],...]

Host names are not required, and may be “wild carded” on the left end, e.g. “*.mydomain.com”. <user name> without a
“@<host>” is equivalent to “<user name>@*”, that is at any host.

qstat -u user1

 Req'd Elap

Job ID User Queue Jobname Sess NDS TSK Mem Time S Time

-------- ------ ----- ------- ---- --- --- --- ---- - ----

16.south user1 workq aims14 -- -- 1 -- 0:01 H --

18.south user1 workq aims14 -- -- 1 -- 0:01 W --

52.south user1 workq my_job -- -- 1 -- 0:10 Q --

qstat -u user1,barry

 Req'd Elap

Job ID User Queue Jobname Sess NDS TSK Mem Time S Time

-------- ------ ----- ------- ---- --- --- --- ---- - ----

51.south barry workq airfoil 930 -- 1 -- 0:13 R 0:01

52.south user1 workq my_job -- -- 1 -- 0:10 Q --

54.south barry workq airfoil -- -- 1 -- 0:13 Q --
UG-174 PBS Professional 19.2.3 User’s Guide

Checking Job & System Status Chapter 10
10.1.6 Listing Running Jobs

The “-r” option to qstat displays the status of all running jobs at the (optionally specified) PBS server. Running jobs
include those that are running and suspended. One line of output is generated for each job reported, and the information
is presented in the alternative display. For example:

qstat –r

host1:

 Req’d Req’d Elap

Job ID User Queue Jobname Sess NDS TSK Mem Time S Time

-------- ----- ----- ------- ---- --- --- ----- ----- - -----

43.host1 user1 workq STDIN 4693 1 1 -- -- R 00:00

10.1.7 Listing Non-Running Jobs

The “-i” option to qstat displays the status of all non-running jobs at the (optionally specified) PBS server. Non-run-
ning jobs include those that are queued, held, and waiting. One line of output is generated for each job reported, and the
information is presented in the alternative display (see description above). For example:

qstat –i

host1:

 Req’d Req’d Elap

Job ID User Queue Jobname Sess NDS TSK Mem Time S Time

---------- ----- ----- ------- ---- --- --- ----- ----- - -----

44[].host1 user1 workq STDIN -- 1 1 -- -- Q --

10.1.8 Listing Hosts Assigned to Jobs

The “-n” option to qstat displays the hosts allocated to any running job at the (optionally specified) PBS server, in
addition to the other information presented in the alternative display. The exec_host information is printed immediately
below the job (see job 51 in the example below), and includes the host name and number of virtual processors assigned to
the job (i.e. “south/0”, where “south” is the host name, followed by the virtual processor(s) assigned.). A text string of “-
-” is printed for non-running jobs. Notice the differences between the queued and running jobs in the example below:

qstat -n

 Req'd Elap

Job ID User Queue Jobname Sess NDS TSK Mem Time S Time

-------- ------ ----- ------- ---- --- --- --- ---- - ----

16.south user1 workq aims14 -- -- 1 -- 0:01 H --

 --

18.south user1 workq aims14 -- -- 1 -- 0:01 W --

 --

51.south barry workq airfoil 930 -- 1 -- 0:13 R 0:01

 south/0

52.south user1 workq my_job -- -- 1 -- 0:10 Q --

 --
PBS Professional 19.2.3 User’s Guide UG-175

Chapter 10 Checking Job & System Status
10.1.9 Displaying Job Comments

The “-s” option to qstat displays the job comments, in addition to the other information presented in the alternative
display. The job comment is printed immediately below the job. By default the job comment is updated by the scheduler
with the reason why a given job is not running, or when the job began executing. A text string of “--” is printed for jobs
whose comment has not yet been set. The example below illustrates the different type of messages that may be displayed:

qstat -s

 Req'd Elap

Job ID User Queue Jobname Sess NDS TSK Mem Time S Time

-------- ----- ----- ------- ---- --- --- --- ---- - ----
16.south user1 workq aims14 -- -- 1 -- 0:01 H --

 Job held by user1 on Wed Aug 22 13:06:11 2004

18.south user1 workq aims14 -- -- 1 -- 0:01 W --

 Waiting on user requested start time

51.south barry workq airfoil 930 -- 1 -- 0:13 R 0:01

 Job run on host south - started Thu Aug 23 at 10:56

52.south user1 workq my_job -- -- 1 -- 0:10 Q --

 Not Running: No available resources on nodes

57.south susan workq solver -- -- 2 -- 0:20 Q --

 --

10.1.10 Showing State of Job, Job Array or Subjob

The “-t” option to qstat will show the state of a job, a job array object, and all non-X subjobs.

The “-J” option to qstat will show only the state of job arrays.

The combination of “-J” and “-t” options to qstat will show only the state of subjobs.
UG-176 PBS Professional 19.2.3 User’s Guide

Checking Job & System Status Chapter 10
For example:

qstat –t

Job ID Name User Time Use S Queue

---------- -------- ----------- -------- - -----

44[].host1 STDIN user1 0 B workq

44[1].host1 STDIN user1 00:00:00 R workq

44[2].host1 STDIN user1 0 Q workq

44[3].host1 STDIN user1 0 Q workq

qstat –J

Job ID Name User Time Use S Queue

----------- -------- ----------- -------- - -----

44[].host1 STDIN user1 0 B workq

$ qstat –Jt

Job ID Name User Time Use S Queue

----------- -------- ----------- -------- - -----

44[1].host1 STDIN user1 00:00:00 R workq

44[2].host1 STDIN user1 0 Q workq

44[3].host1 STDIN user1 0 Q workq

10.1.11 Printing Job Array Percentage Completed

The “-p” option to qstat prints the default display, with a column for Percentage Completed. For a job array, this is the
number of subjobs completed and deleted, divided by the total number of subjobs. For example:

qstat –p

Job ID Name User % done S Queue

------------- -------- ----------- -------- - -----

44[].host1 STDIN user1 40 B workq

10.1.12 Viewing Job Start Time

There are two ways you can find the job’s start time. If the job is still running, you can do a qstat -f and look for the
stime attribute. If the job has finished, you look in the accounting log for the S record for the job. For an array job, only
the S record is available; array jobs do not have a value for the stime attribute.

10.1.13 Viewing Estimated Start Times For Jobs

You can view the estimated start times and vnodes of jobs using the qstat command. If you use the -T option to
qstat when viewing job information, the Elap Time field is replaced with the Est Start Time field. Running jobs are
shown above queued jobs. Running jobs are sorted by their stime attribute (start time).

Queued jobs whose estimated start times are unset (estimated.start_time = unset) are displayed after those with esti-
mated start times, with estimated start time shown as a double dash (“--”). Queued jobs with estimated start times in the
past are treated as if their estimated start times are unset.

Time displayed is local to the qstat command. Current week begins on Sunday.
PBS Professional 19.2.3 User’s Guide UG-177

Chapter 10 Checking Job & System Status
If the estimated start time or vnode information is invisible to unprivileged users, no estimated start time or vnode infor-
mation is available via qstat.

Example output:

qstat -T

 Est

 Req'd Req'd Start

Job ID Username Queue Jobname SessID NDS TSK Memory Time S Time

------- -------- ----- -------- ----- --- --- ------ ----- - -----

5.host1 user1 workq foojob 12345 1 1 128mb 00:10 R --

9.host1 user1 workq foojob -- 1 1 128mb 00:10 Q 11:30

10.host1 user1 workq foojob -- 1 1 128mb 00:10 Q Tu 15

7.host1 user1 workq foojob -- 1 1 128mb 00:10 Q Jul

8.host1 user1 workq foojob -- 1 1 128mb 00:10 Q 2010

11.host1 user1 workq foojob -- 1 1 128mb 00:10 Q >5yrs

13.host1 user1 workq foojob -- 1 1 128mb 00:10 Q --

If the start time for a job cannot be estimated, the start time is shown as a question mark (“?”).

10.1.13.1 Why Does Estimated Start Time Change?

The estimated start time for your job may change for the following reasons:

• Changes to the system, such as vnodes going down, or the administrator offlining vnodes

• A higher priority job coming into the system, or a shift in priority of the existing jobs

10.1.14 Viewing Job Status in Wide Format

The -w qstat option displays job status in wide format. The total width of the display is extended from 80 characters
to 120 characters. The Job ID column can be up to 30 characters wide, while the Username, Queue, and Jobname column
can be up to 15 characters wide. The SessID column can be up to eight characters wide, and the NDS column can be up
to four characters wide.

You can use this option only with the -a, -n, or -s qstat options.

This option is different from the -w option used with -f.

10.1.15 Viewing Information for Finished and Moved Jobs

You can view information for finished and moved jobs in the same way as for queued and running jobs, as long as the job
history is still being stored by PBS.

The -x option to the qstat command allows you to see information for all jobs, whether they are running, queued, fin-
ished or moved. This information is presented in standard format.

You can view the history for selected sets of jobs:

Linux:

qstat -fx `qselect -x -s "MF"`

Windows:

for /F "usebackq" %%j in (`"\Program Files\ PBSPro\ exec\ bin\qselect" -x -s MF`)

do ("\Program Files\PBS\exec\bin\qstat" -fx %%j)
UG-178 PBS Professional 19.2.3 User’s Guide

Checking Job & System Status Chapter 10
10.1.15.1 Getting Information on Jobs Moved to Another Server

If your job is running at another server, you can use the qstat command to see its status. If your site is using peer
scheduling, your job may be moved to a server that is not your default server. In this case, to see information on your job,
you can use any of the following methods:

• Use qstat -x to see information about all jobs, whether running, queued, finished, or moved; you can specify job
IDs

• Give the job ID as an argument to qstat. If you use only “qstat”, your job will not appear to exist. For exam-
ple: you submit a job to ServerA, and it returns the job ID as “123.ServerA”. Then 123.ServerA is moved to Ser-
verB. In this case, use
qstat 123

or

qstat 123.ServerA

to get information about your job. ServerA will query ServerB for the information. To list all jobs at ServerB, you
can use:

qstat @<server>B

If you use “qstat” without the job ID, the job will not appear to exist.

10.1.15.2 Job History In Standard Format

You can use the -x option to the qstat command to see information for finished, moved, queued, and running jobs, in
standard format.

Usage:

qstat -x

Displays information for queued, running, finished, and moved jobs, in standard format.

qstat -x <job ID>

Displays information for a job, regardless of its state, in standard format.

Example 10-1: Showing finished and moved jobs with queued and running jobs:

qstat -x

Job id Name User Time Use S Queue

------------- ----------- ------ ------- --- ------

101.server1 STDIN user1 00:00:00 F workq

102.server1 STDIN user1 00:00:00 M destq@server2

103.server1 STDIN user1 00:00:00 R workq

104.server1 STDIN user1 00:00:00 Q workq

To see status for jobs, job arrays and subjobs that are queued, running, finished, and moved, use qstat -xt.

To see status for job arrays that are queued, running, finished, or moved, use qstat -xJ.
PBS Professional 19.2.3 User’s Guide UG-179

Chapter 10 Checking Job & System Status
When information for a moved job is displayed, the destination queue and server are shown as <queue>@<server>.

Example 10-2: qstat -x output for moved job: destination queue is destq, and destination server is server2.

Job id Name User Time Use S Queue

---------------- ----------- ----- ------- --- ------

101.sequoia STDIN user1 00:00:00 F workq

102.sequoia STDIN user1 00:00:00 M destq@server2

103.sequoia STDIN user1 00:00:00 R workq

Example 10-3: Viewing moved job:

• There are three servers with hostnames ServerA, ServerB, and ServerC

• User1 submits job 123 to ServerA.

• After some time, User1 moves the job to ServerB.

• After more time, the administrator moves the job to QueueC at ServerC.

This means:

• The qstat command will show QueueC@ServerC for job 123.

10.1.15.3 Job History In Alternate Format

You can use the -H option to the qstat command to see job history for finished or moved jobs in alternate format. This
does not display running or queued jobs.

Usage:

qstat -H

Displays information for finished or moved jobs, in alternate format

qstat -H <job ID>

Displays information for that job in alternate format, whether or not it is finished or moved

qstat -H <destination>

Displays information for finished or moved jobs at that destination

Example 10-4: Job history in alternate format:

qstat -H

 Req'd Req'd Elap

Job ID Username Queue Jobname SessID NDS TSK Memory Time S Time

------ -------- ---- ------- ------ --- --- ------ ---- -- -----

101.S1 user1 workq STDIN 5168 1 1 -- -- F 00:00

102.S1 user1 Q1@S2 STDIN -- 1 2 -- -- M --

To see alternate-format status for jobs, job arrays and subjobs that are finished and moved, use qstat -Ht.

To see alternate-format status for job arrays that are finished or moved, use qstat -HJ.

The -H option is incompatible with the -a, -i and -r options.
UG-180 PBS Professional 19.2.3 User’s Guide

Checking Job & System Status Chapter 10
10.1.16 Grouping Jobs and Sorting by ID

You can use the -E option to sort and group jobs in the output of qstat. The -E option groups jobs by server and dis-
plays each group by ascending ID. This option also improves qstat performance. The following table shows how the
-E option affects the behavior of qstat:

10.1.17 Caveats for Job Information

• MoM periodically polls jobs for usage by the jobs running on her host, collects the results, and reports this to the
server. When a job exits, she polls again to get the final tally of usage for that job.

For example, MoM polls the running jobs at times T1, T2, T4, T8, T16, T24, and so on.

The output shown by a qstat during the window of time between T8 and T16 shows the resource usage up to T8.

If the qstat is done at T17, the output shows usage up through T16. If the job ends at T20, the accounting log (and
the final log message, and the email to you if "qsub -me" was used in job submission) contains usage through T20.

• The final report does not include the epilogue. The time required for the epilogue is treated as system overhead.

• The order in which jobs are displayed is undefined.

10.2 Checking Server Status

To see server information in default format:

qstat -B [<server> ...]

To see server information in long format:

qstat -B -f [-F json|dsv [-D <delimiter>]] [-w] [<server> ...]

10.2.1 Viewing Server Information in Default Format

The “-B” option to qstat displays the status of the specified PBS server. One line of output is generated for each server
queried. The three letter abbreviations correspond to various job limits and counts as follows: Maximum, Total, Queued,
Running, Held, Waiting, Transiting, and Exiting. The last column gives the status of the server itself: active, idle, or
scheduling.

qstat -B

Server Max Tot Que Run Hld Wat Trn Ext Status

----------- --- ---- ---- ---- ---- ---- ---- ---- ------

fast.domain 0 14 13 1 0 0 0 0 Active

Table 10-1: How -E Option Affects qstat Output

How qstat is Used Result Without -E Result With -E

qstat (no job ID specified) Queries the default server and displays
result

No change in behavior; same as with-
out -E option

qstat <list of job IDs
from single server>

Displays results in the order specified Displays results in ascending ID order

qstat <job IDs at multiple
servers>

Displays results in the order they are
specified

Groups jobs by server. Displays each
group in ascending order
PBS Professional 19.2.3 User’s Guide UG-181

Chapter 10 Checking Job & System Status
10.2.2 Viewing Server Information in Long Format

You can see server status in JSON or delimiter-separated value formats; see section 10.4, “Full Display Options for Job,
Queue, and Server Status”, on page 184.

When querying jobs, servers, or queues, you can add the “-f” option to qstat to change the display to the full or long
display. For example, the server status shown above can be expanded using “-f” as shown below:

qstat -Bf

Server: fast.mydomain.com

server_state = Active

scheduling = True

total_jobs = 14

state_count = Transit:0 Queued:13 Held:0 Waiting:0

Running:1 Exiting:0

managers = user1@fast.mydomain.com

default_queue = workq

log_events = 511

mail_from = adm

query_other_jobs = True

resources_available.mem = 64mb

resources_available.ncpus = 2

resources_default.ncpus = 1

resources_assigned.ncpus = 1

resources_assigned.nodect = 1

scheduler_iteration = 600

pbs_version = PBSPro_19.2.3.41640

10.3 Checking Queue Status

To view queue information in default format:

qstat -Q [<destination> ...]

To view queue information in alternate format:

qstat -q [-G | -M] [<destination> ...]

To view queue information in long format:

qstat -Q -f [-F json|dsv [-D <delimiter>]] [-w] [<destination> ...]

If you specify a destination identifier, it takes one of the following three forms:

<queue>

@<server>

<queue>@<server>

If you specify <queue>, the request is for status of that queue at the default server.

If you use the @<server> form, the request is for status of all queues at that server.

If you specify a full destination identifier, <queue>@<server>, the request is for status of the named queue at the named
server.
UG-182 PBS Professional 19.2.3 User’s Guide

Checking Job & System Status Chapter 10
10.3.1 Viewing Queue Information in Default Format

The “-Q” option to qstat displays the status of specified queues at the (optionally specified) PBS server. One line of
output is generated for each queue queried.

qstat -Q

Queue Max Tot Ena Str Que Run Hld Wat Trn Ext Type

----- --- --- --- --- --- --- --- --- --- --- ---------

workq 0 10 yes yes 7 1 1 1 0 0 Execution

The columns show the following for each queue:

• Queue Queue name

• Max Maximum number of jobs allowed to run concurrently in the queue

• Tot Total number of jobs in the queue

• Ena Whether the queue is enabled or disabled

• Str Whether the queue is started or stopped

• Que Number of queued jobs

• Run Number of running jobs

• Hld Number of held jobs

• Wat Number of waiting jobs

• Trn Number of jobs being moved (transiting)

• Ext Number of exiting jobs

• Type Type of queue: execution or routing

10.3.2 Viewing Queue Information in Long Format

You can see queue information in JSON or delimiter-separated value formats; see section 10.4, “Full Display Options for
Job, Queue, and Server Status”, on page 184.

Use the long format to see the value for each queue attribute:

qstat -Qf

Queue: workq

queue_type = Execution

total_jobs = 10

state_count = Transit:0 Queued:7 Held:1 Waiting:1

Running:1 Exiting:0

resources_assigned.ncpus = 1

hasnodes = False

enabled = True

started = True
PBS Professional 19.2.3 User’s Guide UG-183

Chapter 10 Checking Job & System Status
10.3.3 Displaying Queue Limits in Alternate Format

The “-q” option to qstat displays any limits set on the requested (or default) queues. Since PBS is shipped with no
queue limits set, any visible limits will be site-specific. The limits are listed in the format shown below.

qstat -q

server: south

Queue Memory CPU Time Walltime Node Run Que Lm State

------ ------ -------- -------- ---- --- --- -- -----

workq -- -- -- -- 1 8 -- E R

10.4 Full Display Options for Job, Queue, and Server

Status

-f [-w]

Full display. Job, queue or server attributes displayed one to a line.

Optional -w prints each attribute on one unbroken line. Feed characters are converted:

• Newline is converted to backslash concatenated with “n”: “\n”

• Form feed is converted to backslash concatenated with “f”: “\f”

This -w is independent of the -w job alternate output option.

-F dsv [-D <delimiter>]

Prints output in delimiter-separated value format. The default delimiter is a pipe (“|”). You can specify a char-
acter or a string delimiter using the -D argument to the -F dsv option. For example, to use a comma as the
delimiter:

qstat -f -F dsv -D,

If the delimiter itself appears in a value, it is escaped:

• On UNIX/Linux, the delimiter is escaped with a backslash (“\”).

• On Windows, the delimiter is escaped with a caret (“^”).

Feed characters are converted:

• Newline is converted to backslash concatenated with “n”: “\n”

• Form feed is converted to backslash concatenated with “f”: “\f”

A newline separates each job from the next. Using newline as the delimiter leads to undefined behavior.

Example of getting output in delimiter-separated value format:

qstat -f -Fdsv

Job Id: 1.vbox|Job_Name = STDIN|Job_Owner = root@vbox|job_state = Q|queue = workq|server =
vbox|Checkpoint = u|ctime = Fri Nov 11 17:57:05 2016|Error_Path = ...
UG-184 PBS Professional 19.2.3 User’s Guide

Checking Job & System Status Chapter 10
-F json

Prints output in JSON format (http://www.json.org/).

Attribute output is preceded by timestamp, PBS version, and PBS server hostname.

Example:

qstat -f -F json

{

"timestamp":1479277336,

"pbs_version":"14.1",

"pbs_server":"vbox",

"Jobs":{

"1.vbox":{

"Job_Name":"STDIN",

"Job_Owner":"root@vbox",

"job_state":"Q",

...

-G

Show size in gigabytes. Alternate format is used.

-M

Show size in megawords. A word is considered to be 8 bytes. Alternate format is used.

10.4.1 Caveats for the qstat Command

When you use the -f option to qstat to display attributes of jobs, queues, or servers, attributes that are unset may not be
displayed. If you do not see an attribute, it is unset.

10.5 Selecting a List of Jobs

The qselect command provides a method to list the job identifier of those jobs, job arrays or subjobs which meet a list
of selection criteria. Jobs are selected from those owned by a single server. The qselect command writes to standard
output a list of zero or more job identifiers which meet the criteria specified by the options. Each option acts as a filter
restricting the number of jobs which might be listed. With no options, the qselect command will list all jobs at the
server which you are authorized to list (query status of). The -u option may be used to limit the selection to jobs owned
by you or other specified users.

For a description of the qselect command, see “qselect” on page 181 of the PBS Professional Reference Guide.

For example, say you want to list all jobs owned by user “barry” that requested more than 16 CPUs. You could use the
following qselect command syntax:

qselect -u barry -l ncpus.gt.16

121.south

133.south

154.south

Notice that what is returned is the job identifiers of jobs that match the selection criteria. This may or may not be enough
information for your purposes. Many users will use shell syntax to pass the list of job identifiers directly into qstat for
viewing purposes, as shown in the next example (necessarily different between Linux and Windows).
PBS Professional 19.2.3 User’s Guide UG-185

http://www.json.org/

Chapter 10 Checking Job & System Status
Linux:

qstat -a `qselect -u barry -l ncpus.gt.16 `

 Req'd Req’d Elap

Job ID User Queue Jobname Sess NDS TSK Mem Time S Time

-------- ----- ----- ------- ---- --- --- --- ---- - ----

121.south barry workq airfoil -- -- 32 -- 0:01 H --

133.south barry workq trialx -- -- 20 -- 0:01 W --

154.south barry workq airfoil 930 -- 32 -- 1:30 R 0:32

Windows (type the following at the cmd prompt, all on one line):

for /F "usebackq" %j in (`qselect -u barry -l ncpus.gt.16`) do

(qstat -a %j)

121.south

133.south

154.south

Note: This technique of using the output of the qselect command as input to qstat can also be used to supply input
to other PBS commands as well.

10.5.1 Listing Job Identifiers of Finished and Moved Jobs

You can list identifiers of finished and moved jobs in the same way as for queued and running jobs, as long as the job his-
tory is still being preserved.

The -x option to the qselect command allows you to list job identifiers for all jobs, whether they are running, queued,
finished or moved. The -H option to the qselect command allows you to list job identifiers for finished or moved jobs
only.

10.5.2 Listing Jobs by Time Attributes

You can use the qselect command to list queued, running, finished and moved jobs, job arrays, and subjobs according
to their time attributes. The -t option to the qselect command allows you to specify how you want to select based on
time attributes. You can also use the -t option twice to bracket a time period.

Example 10-5: Select jobs with end time between noon and 3PM.

qselect -te.gt.09251200 -te.lt.09251500

Example 10-6: Select finished and moved jobs with start time between noon and 3PM.

qselect -x -s “MF” -ts.gt.09251200 -ts.lt.09251500

Example 10-7: Select all jobs with creation time between noon and 3PM

qselect -x -tc.gt.09251200 -tc.lt.09251500

Example 10-8: Select all jobs including finished and moved jobs with qtime of 2.30PM (default relation is .eq.)

qselect -x -tq09251430
UG-186 PBS Professional 19.2.3 User’s Guide

Checking Job & System Status Chapter 10
10.6 Checking License Availability

You can check to see where licenses are available. You can do either of the following:

• Display license information for the current host:
qstat -Bf

• Display resources available (including licenses) on all hosts:
qmgr

Qmgr: print node @default

If your site is using floating licenses, when looking at the server’s license_count attribute, use the sum of the
Avail_Global and Avail_Local values.
PBS Professional 19.2.3 User’s Guide UG-187

Chapter 10 Checking Job & System Status
UG-188 PBS Professional 19.2.3 User’s Guide

11

Submitting Cray Jobs

11.1 PBS Jobs on the Cray

You can submit jobs that are designed to run on the Cray, using the PBS select and place syntax.

When you submit a job that is designed to run on the Cray, you create a job script that contains the same aprun com-
mand as a non-PBS job, but submit the job using the PBS select and place syntax.

If a job does not request a login node, one is chosen for it. A login node is assigned to each PBS job that runs on the
Cray. The job script runs on this login node.

Jobs requesting a vntype of cray_compute are expected to have an aprun in the job script to launch the job on the
compute nodes. PBS does not verify that the job script contains an aprun statement.

You may find it helpful to run qsub in the foreground by using the -f option. This can avoid stale ALPS reservations
not being released.

11.2 Resources

accelerator

accelerator_memory

accelerator_model

energy

eoe

naccelerators

PBScrayhost

PBScraylabel_<label name>

PBScraynid

PBScrayorder

vntype

See “Resources Built Into PBS” on page 258 of the PBS Professional Reference Guide.

11.2.1 Resource Accounting

Jobs that request only compute nodes are not assigned resources from login nodes. PBS accounting logs do not show any
login node resources being used by these jobs.

Jobs that request login nodes are assigned resources from login nodes, and those resources appear in the PBS accounting
logs for these jobs.

PBS performs resource accounting on the login nodes, under the control of their MoMs.

Comprehensive System Accounting (CSA) runs on the compute nodes, under the control of the Cray system. CSA
requires CLE 5.2.
PBS Professional 19.2.3 User’s Guide UG-189

Chapter 11 Submitting Cray Jobs
11.3 Rules for Submitting Jobs on the Cray

11.3.1 Always Specify Node Type

If you want your job to run on Cray nodes, you must specify a Cray node type for your job. You do this by requesting a
value for the vntype vnode resource. On each vnode on a Cray, the vntype resource includes one of the following val-
ues:

cray_login, for a login node

cray_compute, for a compute node

Each chunk of a Cray job that must run on a login node must request a vntype of cray_login.

Each chunk of a Cray job that must run on a compute node must request a vntype of cray_compute.

Example 11-1: Request any login node, and two compute-node vnodes. The job is run on the login node selected by the
scheduler:

qsub -lselect=1:ncpus=2:vntype=cray_login +2:ncpus=2:vntype=cray_compute

Example 11-2: Launch a job on a particular login node by specifying the login node vnode name first in the select line.
The job script runs on the specified login node:

qsub -lselect=1:ncpus=2:vnode=login1 +2:ncpus=2:vntype=cray_compute

For a description of the vntype resource, see “Resources Built Into PBS” on page 258 of the PBS Professional Reference
Guide.

11.3.2 Always Reserve Required Vnodes

Always reserve at least as many PEs as you request in your aprun statement.

11.3.3 Requesting Login Node Where Job Script Runs

If you request a login node as part of your resource request, the login node resource request must be the first element of
the select statement. The job script is run on the login node. If you request more than one login node, the job script runs
on the first login node requested.

11.3.4 Login Nodes in PBS Reservations

If the jobs that are to run in a PBS reservation require a particular login node, you must do the following:

• The reservation must request the specific login node

• Each job that will run in the reservation must request the same login node that the reservation requested

11.3.5 Specifying Number of Chunks

You specify the number of chunks by prefixing each chunk request with an integer. If not specified, this integer defaults
to 1. For example, to specify 4 chunks with 2 CPUs each, and 8 chunks with 1 CPU each:

qsub -lselect=4:ncpus=2+8:ncpus=1

You cannot request the nchunk resource.

If you request fewer chunks, the scheduling cycle is faster. See section 11.8.5, “Request Fewer Chunks”, on page 195.
UG-190 PBS Professional 19.2.3 User’s Guide

Submitting Cray Jobs Chapter 11
11.3.6 Specify Host for Interactive Jobs

Interactive jobs on a Cray must run on a login node. When you run an interactive job, specify the login node as the host
for the job. You can do so using a PBS directive, or the command line. For example:

qsub -l select=host=<name of login node> -I job.sh

#PBS -l select=host=<name of login node>

See section 6.11, “Running Your Job Interactively”, on page 123.

11.4 Techniques for Submitting Cray Jobs

11.4.1 Requesting Groups of Login Nodes

If you want to use groups of esLogin nodes and internal login nodes, your administrator can set the vntype resource on
these nodes to a special value, for example cray_compile.

To submit a job requesting any combination of esLogin nodes and internal login nodes, you specify the special value for
the vntype resource in your select statement. For example:

qsub -lselect=4:ncpus=1:vntype=cray_compile job

11.4.2 Using Internal Login Nodes Only

Compiling, preprocessing, and postprocessing jobs can run on internal login nodes. Internal login nodes have a vntype
value of cray_login. If you want to run a job that needs to use the resources on internal login nodes only, you can specify
vntype=cray_login in your select statement. For example:

qsub -lselect=4:ncpus=1:vntype=cray_login job

11.4.3 Using Compute Nodes

If your job script contains an aprun launch, you must run your job on compute nodes. To run your job on compute
nodes, specify a vntype of cray_compute. For example:

lselect=2:ncpus=2:vntype=cray_compute

11.4.4 Requesting Specific Groups of Nodes

You can use select and place to request the groups of vnodes you want.

You may need to group nodes by some criteria, for example:

• Certain nodes are fast nodes

• Certain nodes share a required or useful characteristic

• Some combination of nodes gives the best performance for an application

Your administrator can set up either of the following:

• Custom Boolean resources on each vnode, which reflect how the nodes are labeled, and allow you to request the
vnodes that represent the group of nodes you want. These resources are named PBScraylabel_<label name>, and
set to True on the vnodes that represent the labeled nodes.
PBS Professional 19.2.3 User’s Guide UG-191

Chapter 11 Submitting Cray Jobs
Your administrator must label the groups of nodes. For example, if a node is both fast and best for App1, it can have
two labels, fast, and BestForApp1.

To request the fast nodes in this example, add the following to each chunk request:

:PBScraylabel_fast=True

• Other custom resources on each vnode, which are set to reflect the vnode’s characteristics. For example, if a vnode
is fast, it can have a custom string resource called “speed”, with a value of fast on that vnode. You must ask your
administrator for the name and possible values for the resource.

11.4.5 Requesting Nodes in Specific Order

Your application may perform better when the ranks are laid out on specific nodes in a specific order. If you want to
request vnodes so that the nodes are in a specific order, you can specify the host for each chunk of the job. For example,
if you need nodes ordered “nid0, nid2, nid4”, you can request the following:

qsub -l select=2:ncpus=2:host=nid0 +2:ncpus=2:host=nid2 +2:ncpus=2:host=nid4

11.4.6 Requesting Specific Hardware

PBS allows you to specifically request (or avoid) specific hardware. Your administrator must create a Boolean resource
on each vnode, and set it to True where the vnode has that specific hardware. We recommend that the Boolean is called
“PBScraylabel_<hardware name>”.

You request or avoid this resource using PBScraylabel_<hardware name>=True or PBScraylabel_<hard-
ware name>=False. For example:

qsub -lselect=3:ncpus=2:PBScraylabel_<new_and_fast>=true myjob

11.4.7 Requesting Accelerators

Accelerators are associated with vnodes when those vnodes represent a host that has at least one accelerator in state UP.
PBS allows you to request vnodes with associated accelerators. PBS sets the value of the naccelerators host-level
resource to the number of accelerators on the host. Note that this value is set for all vnodes on that host, so if you have a
host with one accelerator and four vnodes, each of the four vnodes has naccelerators set to 1.

To request accelerators for your job, use the integer naccelerators resource to request a specific number of accelerators,
or the Boolean accelerator resource if you do not care how many accelerators you get.

To request a vnode on a host with a specific number of associated accelerators, include the following in the job’s select
statement:

naccelerators = <number of accelerators>

To request a vnode on a host with any number of associated accelerators, you can include the following in the job’s select
statement:

accelerator = True

11.4.7.1 Advice on Requesting Accelerators

• When requesting accelerators, put them in the same chunks as CPUs. Otherwise the accelerators could end up in a
chunk taken from a different host from the CPUs, and in that case your CPUs could be on a host without an acceler-
ator.

• Use accelerator=True in a chunk only when you don’t care how many accelerators are in the chunk.
UG-192 PBS Professional 19.2.3 User’s Guide

Submitting Cray Jobs Chapter 11
11.4.7.2 Examples of Requesting Accelerators

Example 11-3: You want a total of 40 PEs with 4 PEs per compute node and one accelerator per compute node:

-lselect=10:ncpus=4:naccelerators=1

Example 11-4: You want 30PEs and a Tesla_x2090 accelerator on each host, and the accelerator should have at least
4000MB, and you don't care how many hosts the job uses:

-lselect=30:ncpus=1:nacclerators=1:accelerator_model=”Tesla_x2090” :accelerator_memory=4000MB
myjob

Example 11-5: You want a total of 40 PEs with 4 PEs per compute node and at least one accelerator per compute node:

-lselect=10:ncpus=4:accelerator=True

Example 11-6: Your system has some compute nodes with one type of accelerator (GPU1), and another type of compute
node with a different type of accelerator (GPU2), and you want to request 10 PEs and 1 accelerator of model
“GPU1” per compute node and 4 PEs and 1 accelerator of model “GPU2” per compute node. Your job request
would look like this:

-lselect=10:ncpus=1:naccelerators=1:accelerator_model=”GPU1”
+4:ncpus=1:naccelerators=1:accelerator_model=”GPU2” myjob

11.5 Using Xeon Phi Vnodes

PBS automatically detects a Xeon Phi in the ALPS inventory. The Xeon Phi attributes are configured automatically in
the PBS vnode attributes. A job can make an explicit request for a Xeon Phi on a compute node and be dispatched to that
node.

When using Xeon Phi vnodes, it’s generally useful to request an AOE that gives you a Xeon Phi memory model with
your desired values for numa_cfg and hbm_cache_pct. Run the pbsnodes command to find the available AOEs
(look at resources_available.aoe) and choose the AOE you want.

To request Xeon Phi vnodes for the compute nodes used by your job, specify the cray_compute resource. For example,
to request 10 Xeon Phi vnodes:

qsub -l select=10:vntype=cray_compute:aoe=<desired AOE>

11.6 Using Hyperthreads on Cray

PBS supports hyperthreading on Cray X* series systems using ALPS. On each vnode, PBS sets
resources_available.ncpus to the number of compute unit elements returned in the XML inventory. This allows PBS
to make ALPS reservations for the compute units of a node, and get all of the hyperthreads associated with those compute
units.

You can use aprun -j to control how you use hyperthreads on XC series machines.

Your administrator may label hyperthreaded vnodes with a custom resource.

We recommend that when you submit jobs to PBS, you use the size of a compute node as the size of a chunk.

To use hyperthreading in your job, request hyperthreading in your aprun call in your job script. Please refer to Cray’s
man page for aprun.

Check the Cray Programming Environment User Guide for Cray’s advice on using CPUs and compute units.

When hyperthreading is enabled on a system, each core is paired with one associated hyperthread, and you should
request ncpus in multiples of 2 so that each associated hyperthread is assigned to the job’s cgroup.

When hyperthreading is not enabled, you should request just the cores.
PBS Professional 19.2.3 User’s Guide UG-193

Chapter 11 Submitting Cray Jobs
Let’s say you request the following:

select=1:ncpus=2

If hyperthreading is enabled, this nets one core and one hyperthread.

If hyperthreading is not enabled, this nets two cores.

11.7 Viewing Cray Job Information

11.7.1 Finding Out Where Job Was Launched

To determine the internal login node where the job was launched, use the qstat -f command:

qstat -f <job ID>

Look at the exec_host line of the output. The first vnode is the login node where the job was launched.

11.7.2 Listing Jobs Running on Vnode

To see which jobs are running on a vnode, use the pbsnodes command:

pbsnodes -av

The jobs attribute of each vnode lists the jobs running on that vnode.

Jobs launched from an internal login node, requesting a vntype of cray_compute only, are not listed in the internal
login node’s vnode’s jobs attribute.

Jobs that are actually running on a login node, which requested a vntype of cray_login, do appear in the login node’s
vnode’s jobs attribute.

11.7.3 How ALPS Request Is Constructed

The reservation request that is sent to the Cray is constructed from the contents of the exec_vnode and
Resource_List.select job attributes. If the exec_vnode attribute contains chunks asking for the same ncpus and
mem, these are grouped into one section of an ALPS request. Cray requires one CPU per thread. The ALPS request is
constructed using the following rules:

Table 11-1: How Cray Elements Are Derived From exec_vnode Terms

Cray Element exec_vnode Term

Processing Element (PE) mpiprocs

Requested number of PEs / compute node in
this section of job request (width)

Total mpiprocs on vnodes representing compute node involved in this
section of job request

Number of threads per PE (depth) (total assigned ncpus on vnodes representing a compute node) / (total
mpiprocs on vnodes representing a compute node)

Memory per PE (mem) (total memory in chunk request)/total mpiprocs in chunk

Number of PEs per compute node (nppn) Sum of mpiprocs on vnodes representing a compute node
UG-194 PBS Professional 19.2.3 User’s Guide

Submitting Cray Jobs Chapter 11
11.7.4 Viewing Accelerator Information

There is no aprun interface for requesting accelerator memory or model, so this information is not translated into Cray
elements. To see this information, look in the MoM logs for the job’s login node.

11.8 Caveats and Advice

11.8.1 Using Combination or Number Resources

When requesting a resource that is set up by the administrator, you must use the same resource string values as the ones
set up by the administrator. “012” is not the same as “102” or “201”.

11.8.2 Avoid Invalid Cray Requests

It is possible to create a select and place statement that meets the requirements of PBS but not of the Cray.

Example 11-7: The Cray width and depth values cannot be calculated from ncpus and mpiprocs values. For example,
if ncpus is 2 and mpiprocs is 4, the depth value is calculated by dividing ncpus by mpiprocs, and is one-half.
This is not a valid depth value for Cray.

Example 11-8: ALPS cannot run jobs with some complex select statements. In particular, a multiple program, multiple
data (MPMD) ALPS reservation where two groups span a compute node will produce an ALPS error, because the
nid shows up in two ReserveParam sections.

11.8.3 Resource Restrictions and Deprecations

11.8.3.1 mpp* Resources Removed

The mpp* resources are no longer used.

11.8.4 Do Not Request PBScrayorder

Do not use PBScrayorder in a resource request.

11.8.5 Request Fewer Chunks

The more chunks in each translated job request, the longer the scheduling cycle takes. Jobs that request a value for
ncpus effectively direct PBS to use the size of ncpus as the value for ncpus for each chunk, thus dividing the number of
chunks by ncpus.

Number of PEs per segment (npps) Not used.

Number of segments per node (nspn) Not used.

NUMA node (segments) Not used.

Table 11-1: How Cray Elements Are Derived From exec_vnode Terms

Cray Element exec_vnode Term
PBS Professional 19.2.3 User’s Guide UG-195

Chapter 11 Submitting Cray Jobs
If you are on a homogeneous system, we recommend that chunks use the value for ncpus for a vnode or for a compute
node.

Example 11-9: Comparison of larger vs. smaller chunk size and the effect on scheduling time:

Submit job with chunk size 1 and 8544 chunks:

qsub -lselect=8544:ncpus=1 job

Job’s Resource_List:

Resource_List.ncpus = 8544

Resource_List.place = free

Resource_List.select = 8544:vntype=cray_compute

Submit_arguments = -lselect=8544:ncpus=1 job

Scheduling took 6 seconds:

12/05/2011 16:46:10;0080;pbs_sched;Job;23.example;considering job to run

12/05/2011 16:46:16;0040;pbs_sched;Job;23.example;Job run

If you are on a heterogeneous system, with varying sizes for vnodes or compute nodes, you can request chunk sizes that
fit available hardware, but this may not be feasible.

11.8.6 Improving Performance

• You can speed performance via the -E option to qstat; see section 10.1.16, “Grouping Jobs and Sorting by ID”, on
page 181.

• We give several recommendations for improving file transfer performance in section 14.6.6, "Advice on Improving
File Transfer Performance", on page 557 of the PBS Professional Administrator’s Guide.

• You can run parallel jobs exclusively within a cpuset for repeatability of performance.

• You can avoid using the -f option to qsub where possible; see section 2.5.9, “Running qsub in the Foreground”, on
page 31 and “Options to qsub” on page 212 of the PBS Professional Reference Guide.

11.9 Errors and Logging

11.9.1 Invalid Cray Requests

When a select statement does not meet Cray requirements, and the Cray reservation fails, the following error message is
printed in MoM’s log, at log event class 0x080:

“Fatal MPP reservation error preparing request”

11.9.2 Job Requests More Than Available

If do_not_span_psets is set to True, and a job requests more resources than are available in one placement set, the fol-
lowing happens:

• The job's comment is set to the following:
“Not Running: can't fit in the largest placement set, and can't span psets”

• The following message is printed to the scheduler’s log:
“Can't fit in the largest placement set, and can't span placement sets”
UG-196 PBS Professional 19.2.3 User’s Guide

12

Using Provisioning

PBS provides automatic provisioning of an OS or application on vnodes that are configured to be provisioned. When a
job requires an OS that is available but not running, or an application that is not installed, PBS provisions the vnode with
that OS or application.

12.1 Definitions

AOE

The environment on a vnode. This may be one that results from provisioning that vnode, or one that is already
in place

Provision

To install an OS or application, or to run a script which performs installation and/or setup

Provisioned Vnode

A vnode which, through the process of provisioning, has an OS or application that was installed, or which has
had a script run on it

12.2 How Provisioning Works

Provisioning can be performed only on vnodes that have provisioning enabled, shown in the vnode’s provision_enable
attribute.

Provisioning can be the following:

• Directly installing an OS or application

• Running a script which may perform setup or installation

Each vnode is individually configured for provisioning with a list of available AOEs, in the vnode’s
resources_available.aoe attribute.

Each vnode’s current_aoe attribute shows that vnode’s current AOE. The scheduler queries each vnode’s aoe resource
and current_aoe attribute in order to determine which vnodes to provision for each job.

Provisioning can be used for interactive jobs.

A job’s walltime clock starts when provisioning for the job has finished.

12.2.1 Causing Vnodes To Be Provisioned

An AOE can be requested for a job or a reservation. When a job requests an AOE, that means that the job will be run on
vnodes running that AOE. When a reservation requests an AOE, that means that the reservation reserves vnodes that
have that AOE available. The AOE is instantiated on reserved vnodes only when a job requesting that AOE runs.

When the scheduler runs each job that requests an AOE, it either finds the vnodes that satisfy the job’s requirements, or
provisions the required vnodes. For example, if SLES is available on a set of vnodes that otherwise suit your job, you
can request SLES for your job, and regardless of the OS running on those vnodes before your job starts, SLES will be
running at the time the job begins execution.
PBS Professional 19.2.3 User’s Guide UG-197

Chapter 12 Using Provisioning
12.2.2 Using an AOE

When you request an AOE for a job, the requested AOE must be one of the AOEs that has been configured at your site.
For example, if the AOEs available on vnodes are “rhel” and “sles”, you can request only those; you cannot request
“suse”.

Your job can run where its requested AOE can be supplied both by provisioning and where the AOE already matches the
request. Some of your job chunks can run on the non-provisionable vnodes that already match the requested AOE, and
some chunks can run on vnodes that can be provisioned to match the requested AOE.

You can request a reservation for vnodes that have a specific AOE available. This way, jobs needing that AOE can be
submitted to that reservation. This means that jobs needing that AOE are guaranteed to be running on vnodes that have
that AOE available.

Each reservation can have at most one AOE specified for it. Any jobs that run in that reservation must not request a dif-
ferent AOE from the one requested for the reservation. That is, the job can run in the reservation if it either requests no
AOE, or requests the same AOE as the reservation.

12.2.3 Job Substates and Provisioning

When a job is in the process of provisioning, its substate is provisioning. This is the description of the substate:

provisioning

The job is waiting for vnode(s) to be provisioned with its requested AOE. Integer value is 71. See “Job Sub-
states” on page 352 of the PBS Professional Reference Guide for a list of job substates.

The following table shows how provisioning events affect job states and substates:

12.3 Requirements and Restrictions

12.3.1 Host Restrictions

12.3.1.1 Single-vnode Hosts Only

PBS will provision only single-vnode hosts. Do not attempt to use provisioning on hosts that have more than one vnode.

Table 12-1: Provisioning Events and Job States/Substates

Event Initial Job State, Substate Resulting Job State, Substate

Job submitted Queued and ready for selection

Provisioning starts Queued, Queued Running, Provisioning

Provisioning fails to start Queued, Queued Held, Held

Provisioning fails Running, Provisioning Queued, Queued

Provisioning succeeds and job runs Running, Provisioning Running, Running

Internal error occurs Running, Provisioning Held, Held
UG-198 PBS Professional 19.2.3 User’s Guide

Using Provisioning Chapter 12
12.3.1.2 Server Host Cannot Be Provisioned

The server host cannot be provisioned: a MoM can run on the server host, but that MoM’s vnode cannot be provisioned.
The provision_enable vnode attribute, resources_available.aoe, and current_aoe cannot be set on the server host.

12.3.2 AOE Restrictions

Only one AOE can be instantiated at a time on a vnode.

Only one kind of aoe resource can be requested in a job. For example, an acceptable job could make the following
request:

-l select=1:ncpus=1:aoe=suse+1:ncpus=2:aoe=suse

12.3.2.1 Vnode Job Restrictions

A vnode with any of the following jobs will not be selected for provisioning:

• One or more running jobs

• A suspended job

• A job being backfilled around

12.3.2.2 Provisioning Job Restrictions

A job that requests an AOE will not be backfilled around.

12.3.2.3 Vnode Reservation Restrictions

A vnode will not be selected for provisioning for job MyJob if the vnode has a confirmed reservation, and the start time
of the reservation is before job MyJob will end.

A vnode will not be selected for provisioning for a job in reservation R1 if the vnode has a confirmed reservation R2, and
an occurrence of R1 and an occurrence of R2 overlap in time and share a vnode for which different AOEs are requested
by the two occurrences.

12.3.3 Requirements for Jobs

12.3.3.1 If AOE is Requested, All Chunks Must Use Same AOE

If any chunk of a job requests an AOE, all chunks must use that AOE, even if they do not explicitly request an AOE. For
example, if your job requests

-l select=2:ncpus=1:aoe=suse+4:ncpus=2

all chunks must use the suse AOE.

If a job requesting an AOE is submitted to a reservation, that reservation must also request the same AOE.
PBS Professional 19.2.3 User’s Guide UG-199

Chapter 12 Using Provisioning
12.4 Using Provisioning

12.4.1 Requesting Provisioning

You request a reservation with an AOE in order to reserve the resources and AOE required to run a job. You request an
AOE for a job if that job requires that AOE. You request provisioning for a job or reservation using the same syntax.

You can request an AOE for the entire job/reservation:

-l aoe = <AOE>

Example:

-l aoe = suse

The -l <AOE> form cannot be used with -l select.

You can request an AOE for a single-chunk job/reservation:

-l select=<chunk request>:aoe=<AOE>

Example:

-ls select=1:ncpus=2:aoe=rhel

You can request the same AOE for each chunk of a job/reservation:

-l select=<chunk request>:aoe=<AOE> + <chunk request>:aoe=<AOE>

Example:

-l select=1:ncpus=1:aoe=suse + 2:ncpus=2:aoe=suse

You can request the an AOE for some, but not all, chunks of a job/reservation:

-l select=<chunk request>:aoe=<AOE> + <chunk request>

Example:

-l select=1:ncpus=1:aoe=suse + 2:ncpus=2

12.4.2 Commands and Provisioning

If you try to use PBS commands on a job that is in the provisioning substate, the commands behave differently. The pro-
visioning of vnodes is not affected by the commands; if provisioning has already started, it will continue. The following
table lists the affected commands:

Table 12-2: Effect of Commands on Jobs in Provisioning Substate

Command Behavior While in Provisioning Substate

qdel (Without force) Job is not deleted

(With force) Job is deleted

qsig -s suspend Job is not suspended

qhold Job is not held

qrerun Job is not requeued
UG-200 PBS Professional 19.2.3 User’s Guide

Using Provisioning Chapter 12
12.4.3 How Provisioning Affects Jobs

A job that has requested an AOE will not preempt another job. Therefore no job will be terminated in order to run a job
with a requested AOE.

A job that has requested an AOE will not be backfilled around.

12.5 Caveats and Errors

12.5.1 Requested Job AOE and Reservation AOE Should
Match

Do not submit jobs that request an AOE to a reservation that does not request the same AOE. Reserved vnodes may not
supply that AOE; your job will not run.

12.5.2 Allow Enough Time in Reservations

If a job is submitted to a reservation with a duration close to the walltime of the job, provisioning could cause the job to
be terminated before it finishes running, or to be prevented from starting. If a reservation is designed to take jobs
requesting an AOE, leave enough extra time in the reservation for provisioning.

12.5.3 Requesting Multiple AOEs For a Job or Reservation

Do not request more than one AOE per job or reservation. The job will not run, or the reservation will remain uncon-
firmed.

12.5.4 Held and Requeued Jobs

The job is held with a system hold for the following reasons:

• Provisioning fails due to invalid provisioning request or to internal system error

• After provisioning, the AOE reported by the vnode does not match the AOE requested by the job

The hold can be released by the PBS Administrator after investigating what went wrong and correcting the mistake.

The job is requeued for the following reasons:

• The provisioning hook fails due to timeout

• The vnode is not reported back up

qmove Cannot be used on a job that is provisioning

qalter Cannot be used on a job that is provisioning

qrun Cannot be used on a job that is provisioning

Table 12-2: Effect of Commands on Jobs in Provisioning Substate

Command Behavior While in Provisioning Substate
PBS Professional 19.2.3 User’s Guide UG-201

Chapter 12 Using Provisioning
12.5.5 Conflicting Resource Requests

The values of the resources arch and vnode may be changed by provisioning. Do not request an AOE and either arch or
vnode for the same job.

12.5.6 Job Submission and Alteration Have Same
Requirements

Whether you use the qsub command to submit a job, or the qalter command to alter a job, the job must eventually
meet the same requirements. You cannot submit a job that meets the requirements, then alter it so that it does not.
UG-202 PBS Professional 19.2.3 User’s Guide

13

Using Accounting

13.1 Using Accounting

13.1.1 Specifying Accounting String

You can associate an accounting string with your job by setting the value of the Account_Name job attribute. This
attribute has no default value. You can set the value of Account_Name at the command line or in a PBS directive:

qsub -A <accounting string>

#PBS Account_Name=<accounting string>

The <accounting string> can be any string of characters; PBS does not attempt to interpret it.

You can use the qalter command to change the value of the Account_Name job attribute while the job is queued, but
not while the job is running.

13.1.2 Using Comprehensive System Accounting

You can use CSA on Cray systems running CLE 5.2. PBS support for CSA on HPE SGI systems is no longer available.
The CSA functionality for HPE SGI systems has been removed from PBS.

CSA provides accounting information about user jobs, called user job accounting.

CSA works the same with and without PBS. To run user job accounting, either you must specify the file to which raw
accounting information will be written, or an environment variable must be set. The environment variable is
ACCT_TMPDIR. This is the directory where a temporary file of raw accounting data is written.

To run user job accounting, you issue the CSA command “ja <filename>” or, if the environment variable
ACCT_TMPDIR is set, “ja”. In order to have an accounting report produced, you issue the command “ja
-<options>” where the options specify that a report should be written and what kind to write. To end user job
accounting, you issue the command “ja -t”; the -t option can be included in the previous set of options. See the man
page on ja for details.

The starting and ending ja commands must be used before and after any other commands you wish to monitor. Here are
examples of a command line and a script:

On the command line:

qsub -N myjobname -l ncpus=1

ja myrawfile

sleep 50

ja -c > myreport

ja -t myrawfile

ctrl-D

Accounting data for your job (sleep 50) is written to myreport.
PBS Professional 19.2.3 User’s Guide UG-203

Chapter 13 Using Accounting
If you create a job script foo with these commands:

#PBS -N myjobname

#PBS -l ncpus=1

ja myrawfile

sleep 50

ja -c > myreport

ja -t myrawfile

Then you can run your job script via qsub, to do the same thing as in the previous example:

qsub foo

13.1.3 Using Dependencies with Accounting

If you need to run end-of-day accounting, you can use dependencies; see section 6.2, “Using Job Dependencies”, on page
109

13.1.4 Advice and Caveats for Using Accounting

13.1.4.1 Use an Integrated MPI

Many MPIs are integrated with PBS. PBS provides tools to integrate most of them; a few MPIs supply the integration.
When a job is run under an integrated MPI, PBS can track resource usage, signal job processes, and perform accounting
for all processes of the job.

When a job is run under an MPI that is not integrated with PBS, PBS is limited to managing the job only on the primary
vnode, so resource tracking, job signaling, and accounting happen only for the processes on the primary vnode.

Under Windows, some MPIs such as MPICH are not integrated with PBS.

See section 5.2.1, “Using an Integrated MPI”, on page 81.
UG-204 PBS Professional 19.2.3 User’s Guide

Index

A
accelerator UG-189
accelerator_memory UG-189
accelerator_model UG-189
accounting UG-203
ACCT_TMPDIR UG-203
Advance reservation

creation UG-136
advance reservation UG-135
AOE UG-197

using UG-198
application licenses

floating UG-55
node-locked

per-CPU UG-56

B
blocking jobs UG-122

C
Changing

order of jobs UG-166
chunk UG-52, UG-54
chunk-level resource UG-52
commands UG-2

and provisioning UG-200
comment UG-176
count_spec UG-137
CSA UG-203
cygwin UG-16

D
Deleting Jobs UG-164
Display

non-running jobs UG-175

E
exclhost UG-66
exclusive UG-66
Exit Status

job arrays UG-154

F
file

staging UG-33

floating licenses UG-55
free UG-65
freq_spec UG-137

G
group=resource UG-66

H
here document UG-22

I
identifier UG-12
Identifier Syntax UG-148
InfiniBand UG-98, UG-99
instance UG-135
instance of a standing reservation UG-135
Intel MPI

examples UG-86
interval_spec UG-137

J
ja

CSA command UG-203
Job

comment UG-176
dependencies UG-109
sending messages to UG-165
sending signals to UG-166
submission options UG-24

job
definition UG-2
identifier UG-12

Job Array
States UG-149

job array
identifier UG-147
range UG-147

Job Arrays UG-147
exit status UG-154
prologues and epilogues UG-150

Job Submission Options UG-24
job-wide resource UG-52, UG-53

L
Limits on Resource Usage UG-62
PBS Professional 19.2.3 User’s Guide UG-205

Index
M
max_walltime UG-114
min_walltime UG-115
Modifying Job Attributes UG-162
MoM UG-2
Monitoring UG-1
Moving

jobs between queues UG-167
MPI

Intel MPI
examples UG-86

MPICH2
examples UG-100

MPICH-MX
MPD

examples UG-93
rsh/ssh

examples UG-94
MVAPICH1 UG-98

examples UG-98
MPICH UG-89
MPICH2

examples UG-100
MPICH-MX

MPD
examples UG-93

rsh/ssh
examples UG-94

MPI-OpenMP UG-105
MVAPICH1 UG-98

examples UG-98

N
naccelerators UG-189
nqs2pbs UG-3

O
OpenMP UG-104

P
pack UG-65
Parallel Virtual Machine (PVM) UG-103
password

single-signon UG-23
Windows UG-23

PBS Environmental Variables UG-149
PBS_ARRAY_ID UG-149
PBS_ARRAY_INDEX UG-149
pbs_hostn UG-4
PBS_JOBID UG-149
pbs_migrate_users UG-4
pbs_password UG-3, UG-23

pbs_probe UG-4
pbs_python UG-3
pbs_rdel UG-3
pbs_rstat UG-3
pbs_rsub UG-3
pbs_tclsh UG-4
PBScrayhost UG-189
PBScraylabel UG-189
PBScraynid UG-189
PBScrayorder UG-189
pbsdsh UG-3
pbsfs UG-4
pbsnodes UG-4
pbs-report UG-4
per-CPU node-locked licenses UG-56
printjob UG-4
Prologues and Epilogues

job arrays UG-150
provision UG-197
provisioned vnode UG-197
provisioning UG-198

allowing time UG-201
and commands UG-200
AOE restrictions UG-199
host restrictions UG-198
requesting UG-200
using AOE UG-198
vnodes UG-197

PVM (Parallel Virtual Machine UG-103

Q
qalter UG-3
qdel UG-3
qdisable UG-4
qenable UG-4
qhold UG-3, UG-120
qmgr UG-4
qmove UG-3, UG-167
qmsg UG-3, UG-165
qorder UG-3, UG-166, UG-167
qrerun UG-4
qrls UG-3, UG-120
qrun UG-4
qselect UG-3, UG-185, UG-186
qsig UG-3
qstart UG-4
qstat UG-3, UG-120, UG-164, UG-167, UG-170,
UG-171, UG-172, UG-174, UG-175, UG-176, UG-182,
UG-183, UG-184, UG-186
qstop UG-4
qsub UG-3
qsub options UG-24
qterm UG-4
UG-206 PBS Professional 19.2.3 User’s Guide

Index
Queuing UG-1

R
recurrence rule UG-137
report UG-203
requesting provisioning UG-200
Reservation

deleting UG-140
reservation

advance UG-135, UG-136
degraded UG-135
instance UG-135
Setting start time & duration UG-138
soonest occurrence UG-135
standing UG-135

instance UG-135
soonest occurrence UG-135

standing reservation UG-137
Submitting jobs UG-143

reservations
time for provisioning UG-201

resource
job-wide UG-52, UG-53

Resource_List UG-25
restrictions

AOE UG-199
provisioning hosts UG-198

resv_nodes UG-135
run_count UG-25, UG-121

S
scatter UG-65
scheduler UG-2
Scheduling UG-1
sequence number UG-147
server UG-2
setting job attributes UG-16
share UG-66
SIGKILL UG-166
SIGNULL UG-166
SIGTERM UG-166
single-signon UG-23
Single-Signon Password Method UG-23
soonest occurrence UG-135
stageout UG-25
standing reservation UG-135, UG-137
States

job array UG-149
subjob UG-147
subjob index UG-147
submission options UG-24
Submitting a PBS Job UG-11
syntax

identifier UG-148

T
time between reservations UG-146
tracejob UG-3

U
until_spec UG-137
User Guide UG-x
user job accounting UG-203

V
Vnode Types UG-51
vnodes

provisioning UG-197
vscatter UG-66

W
waiting for job completion UG-122
Windows

password UG-23
PBS Professional 19.2.3 User’s Guide UG-207

Index
UG-208 PBS Professional 19.2.3 User’s Guide

	Contents
	About PBS Documentation
	Getting Started with PBS
	1.1 Why Use PBS?
	1.2 PBS Tasks and Components
	1.2.1 PBS Tasks
	1.2.2 PBS Components

	1.3 Interfaces to PBS
	1.3.1 PBS Commands

	1.4 Setting Up Your Environment
	1.4.1 Prerequisites for Account
	1.4.2 Setting Up Your Linux Environment
	1.4.2.1 Set Paths to PBS Commands
	1.4.2.2 Set Paths to PBS Man Pages
	1.4.2.3 Make Login and Logout Files Behave Properly for Jobs
	1.4.2.4 Capture Correct Job Exit Status
	1.4.2.5 Avoid Background Processes Inside Jobs
	1.4.2.6 Provide bash Functions to Jobs

	1.4.3 Setting Up Your Windows Environment
	1.4.3.1 HOMEDIR for Windows Users
	1.4.3.2 Requirements for Windows Username
	1.4.3.3 Requirements for Windows User Account
	1.4.3.4 Allow Job Submission and Return of Output
	1.4.3.5 Set up Paths

	1.4.4 Setting Up Your User Authorization
	1.4.4.1 User Authorization Under Linux
	1.4.4.2 User Authorization Under Windows

	1.4.5 Setting Time Zone for Submission Host

	Submitting a PBS Job
	2.1 Introduction to the PBS Job
	2.1.1 Lifecycle of a PBS Job, Briefly
	2.1.2 Where and How Your PBS Job Runs
	2.1.3 The Job Identifier
	2.1.4 Shell Script(s) for Your Job
	2.1.5 Scratch Space for Jobs
	2.1.6 Types of Jobs
	2.1.7 Job Input and Output Files

	2.2 The PBS Job Script
	2.2.1 Overview of a Job Script
	2.2.2 Types of Job Scripts
	2.2.2.1 Linux Shell Scripts
	2.2.2.2 Python Job Scripts
	2.2.2.2.i Debugging Python Job Scripts
	2.2.2.2.ii Python Windows Caveat

	2.2.2.3 Windows Job Scripts
	2.2.2.3.i Requirements for Windows Command Scripts
	2.2.2.3.ii Windows Advice and Caveats

	2.2.3 Setting Job Characteristics
	2.2.3.1 Job Attributes
	2.2.3.2 Job Resources
	2.2.3.3 Setting Job Attributes
	2.2.3.4 Using PBS Directives
	2.2.3.4.i Changing the Directive Prefix
	2.2.3.4.ii Caveats and Restrictions for PBS Directives

	2.2.4 Job Tasks
	2.2.5 Job Script Names
	2.2.5.1 How PBS Parses a Job Script
	2.2.5.1.i Comparison Between Equivalent Linux and Windows Job Scripts

	2.3 Submitting a PBS Job
	2.3.1 Prerequisites for Submitting Jobs
	2.3.2 Ways to Submit a PBS Job
	2.3.3 Submitting a Job Using a Script
	2.3.3.1 Specifying the Top Shell for Your Job
	2.3.3.1.i Specifying Job Top Shell Under Linux
	2.3.3.1.ii Specifying Job Top Shell Under Windows
	2.3.3.1.iii Caveats for Specifying Job Top Shell

	2.3.3.2 Specifying Job Script Shell or Interpreter
	2.3.3.2.i Specifying Job Script Shell or Interpreter Under Linux
	2.3.3.2.ii Specifying Job Script Shell or Interpreter Under Windows

	2.3.3.3 Examples of Submitting Jobs Using Scripts
	2.3.3.4 Passing Arguments to Jobs

	2.3.4 Submitting Jobs by Specifying Executable on Command Line
	2.3.5 Submitting Jobs Using Keyboard Input
	2.3.6 Submitting Jobs Under Windows
	2.3.6.1 Passwords
	2.3.6.1.i Single-Signon Password Method
	2.3.6.1.ii Per-job Password Method

	2.4 Job Submission Recommendations and Advice
	2.4.1 Trapping Signals in Script

	2.5 Job Submission Options
	2.5.1 Specifying Email Notification
	2.5.1.1 Specifying Job Lifecycle Email Points
	2.5.1.2 Setting Email Recipient List
	2.5.1.3 Restricting Number of Job Deletion Emails
	2.5.1.4 Windows Caveats for Email

	2.5.2 Specifying Job Name
	2.5.3 Specifying a Project for a Job
	2.5.4 Specifying Job Username
	2.5.4.1 Caveats for Changing Job Username

	2.5.5 Specifying Job Group ID
	2.5.5.1 Group Names Under Windows

	2.5.6 Specifying Accounting String
	2.5.7 Specifying Server and/or Queue
	2.5.7.1 Using or Avoiding Dedicated Time

	2.5.8 Suppressing Printing Job Identifier to stdout
	2.5.9 Running qsub in the Foreground

	Job Input & Output Files
	3.1 Introduction to Job File I/O in PBS
	3.2 Input/Output File Staging
	3.2.1 Staging and Execution Directory: User Home vs. Job- specific
	3.2.2 Using Job-specific Staging and Execution Directories
	3.2.2.1 Setting the Job Staging and Execution Directory
	3.2.2.2 The jobdir Job Attribute and the PBS_JOBDIR Environment Variable

	3.2.3 Attributes and Environment Variables Affecting Staging
	3.2.4 Specifying Files To Be Staged In or Staged Out
	3.2.5 Caveats and Requirements for Staging
	3.2.5.1 Linux: Staging and Special Characters
	3.2.5.2 Windows: Staging and Special Characters or Paths
	3.2.5.2.i Special Characters
	3.2.5.2.ii Using UNC Paths

	3.2.5.3 Path Names for Staging
	3.2.5.4 Required Permissions
	3.2.5.5 Warning About Ampersand
	3.2.5.6 Interactive Jobs and File I/O
	3.2.5.7 Copying Directories Into and Out Of the Staging and Execution Directory
	3.2.5.8 Wildcards In File Staging

	3.2.6 Examples of File Staging
	3.2.6.1 Example of Using Job-specific Staging and Execution Directories

	3.2.7 Summary of the Job Lifecycle
	3.2.8 Detailed Description of Job Lifecycle
	3.2.8.1 Creation of TMPDIR
	3.2.8.2 Choice of Staging and Execution Directories
	3.2.8.2.i Job-specific Staging and Execution Directories
	3.2.8.2.ii User Home Directory as Staging and Execution Directory

	3.2.8.3 Setting Environment Variables and Attributes
	3.2.8.4 Staging Files Into Staging and Execution Directories
	3.2.8.5 Running the Prologue
	3.2.8.6 Job Execution
	3.2.8.7 Standard Out and Standard Error
	3.2.8.7.i Job-specific Staging and Execution Directories
	3.2.8.7.ii User Home Directory as Staging and Execution Directory

	3.2.8.8 Running the Epilogue
	3.2.8.9 Staging Files Out and Removing Execution Directory
	3.2.8.9.i Job-specific Staging and Execution Directories

	3.2.8.10 Removing TMPDIRs and Files

	3.2.9 Staging with Job Arrays
	3.2.10 Stagein and Stageout Failure
	3.2.10.1 File Stagein Failure
	3.2.10.2 File Stageout Failure

	3.3 Managing Output and Error Files
	3.3.1 Default Behavior For Output and Error Files
	3.3.2 Paths for Output and Error Files
	3.3.2.1 Default Paths for Output and Error Files
	3.3.2.2 Specifying Paths
	3.3.2.3 Specifying Paths from Windows Hosts
	3.3.2.3.i Using Special Characters in Paths
	3.3.2.3.ii Using UNC Paths

	3.3.2.4 Caveats for Paths

	3.3.3 Avoiding Creation of stdout and/or stderr
	3.3.4 Merging Output and Error Files
	3.3.5 Keeping Output and Error Files on Execution Host
	3.3.5.1 Caveats for Keeping Files on Execution Host

	3.3.6 Writing Files Directly to Final Destination
	3.3.7 Changing Linux Job umask
	3.3.7.1 Caveats

	3.3.8 Troubleshooting File Delivery
	3.3.8.1 Non-delivery of Output

	3.3.9 Caveats for Output and Error Files
	3.3.9.1 Retaining Files on Execution Host
	3.3.9.2 Standard Output and Error Appended When Job is Rerun
	3.3.9.3 Windows Mapped Drives and PBS
	3.3.9.4 Harmless csh Error Message
	3.3.9.5 Interactive Jobs and File I/O
	3.3.9.6 Write Permissions Required

	Allocating Resources & Placing Jobs
	4.1 What is a Vnode?
	4.1.1 Deprecated Vnode Types

	4.2 PBS Resources
	4.2.1 Introduction to PBS Resources
	4.2.2 Glossary

	4.3 Requesting Resources
	4.3.1 Quick Summary of Requesting Resources
	4.3.2 Requesting Job-wide Resources
	4.3.3 Requesting Resources in Chunks
	4.3.4 Requesting Boolean Resources
	4.3.5 Requesting Application Licenses
	4.3.5.1 Requesting Floating Application Licenses
	4.3.5.2 Requesting Node-locked Application Licenses
	4.3.5.2.i Requesting Per-host Node-locked Application Licenses
	4.3.5.2.ii Requesting Per-use Node-locked Application Licenses
	4.3.5.2.iii Requesting Per-CPU Node-locked Application Licenses

	4.3.6 Requesting Scratch Space
	4.3.7 Requesting GPUs
	4.3.7.1 Binding to GPUs
	4.3.7.2 Requesting Non-specific GPUs and Exclusive Use of Node
	4.3.7.3 Requesting Non-specific GPUs and Shared Use of Node
	4.3.7.4 Requesting Specific GPUs
	4.3.7.5 Viewing GPU Information for Nodes

	4.3.8 Caveats and Restrictions on Requesting Resources
	4.3.8.1 Caveats and Restrictions for Specifying Resource Values
	4.3.8.2 Warning About NOT Requesting walltime
	4.3.8.3 Caveats for Jobs Requesting Undefined Resources
	4.3.8.4 Matching Resource Requests with Unset Resources
	4.3.8.5 Caveat for Invisible or Unrequestable Resources
	4.3.8.6 Warning About Requesting Tiny Amounts of Memory
	4.3.8.7 Maximum Length of Job Submission Command Line
	4.3.8.8 Only One select Statement Per Job
	4.3.8.9 The software Resource is Job-wide
	4.3.8.10 Do Not Mix Old and New Syntax

	4.4 How Resources are Allocated to Jobs
	4.4.1 Applying Default Resources
	4.4.1.1 Applying Job-wide Default Resources
	4.4.1.2 Applying Per-chunk Default Resources
	4.4.1.3 Caveat for Moving Jobs From One Queue to Another

	4.5 Limits on Resource Usage
	4.5.1 Enforceable Resource Limits
	4.5.2 Origins of Resource Limits
	4.5.3 Job-wide Resource Limits
	4.5.4 Per-chunk Resource Limits
	4.5.4.1 Effects of Limits

	4.5.5 Examples of Memory Limits

	4.6 Viewing Resources
	4.6.1 Viewing Server, Queue, and Vnode Resources
	4.6.2 Viewing Job Resources
	4.6.2.1 Resources Shown in Resource_List Job Attribute

	4.7 Specifying Job Placement
	4.7.1 Using the place Statement
	4.7.1.1 Specifying Arrangement of Chunks
	4.7.1.1.i Caveats and Restrictions for Arrangement

	4.7.1.2 Specifying Shared or Exclusive Use of Vnodes
	4.7.1.3 Grouping on a Resource
	4.7.1.3.i Grouping vs. Placement Sets

	4.7.2 How the Job Gets its Place Statement
	4.7.3 Caveats and Restrictions for Specifying Placement
	4.7.4 Examples of Specifying Placement

	4.8 Backward Compatibility
	4.8.1 Old-style Resource Specifications
	4.8.2 Old-style Node Specifications
	4.8.3 Conversion of Old Style to New
	4.8.3.1 Conversion of Resource Specifications
	4.8.3.2 Conversion of Node Specifications
	4.8.3.3 Examples of Converting Old Syntax to New

	4.8.4 Caveats for Using Old Syntax
	4.8.4.1 Changes in Behavior
	4.8.4.2 Do Not Mix Old and New Styles
	4.8.4.3 Resource Request Conversion Dependent on Where Resources are Defined
	4.8.4.4 Properties are Deprecated
	4.8.4.5 Replace cpp with ncpus
	4.8.4.6 Environment Variables Set During Conversion

	Multiprocessor Jobs
	5.1 Submitting Multiprocessor Jobs
	5.1.1 Assigning the Chunks You Want
	5.1.1.1 Specifying Primary Execution Host
	5.1.1.2 Request Most Specific Chunks First

	5.1.2 The Job Node File
	5.1.2.1 Node File Format and Contents
	5.1.2.2 Name and Location of Node File
	5.1.2.3 Node File for Old-style Requests
	5.1.2.4 Using and Modifying the Node File
	5.1.2.5 Node File Caveats
	5.1.2.6 Viewing Execution Hosts

	5.1.3 Specifying Number of MPI Processes Per Chunk
	5.1.3.1 Chunks With No MPI Processes

	5.1.4 Caveats and Advice for Multiprocessor Jobs
	5.1.4.1 Requesting Uniform Processors
	5.1.4.2 Requesting Storage on NFS Server

	5.1.5 File Staging for Multiprocessor Jobs
	5.1.6 Prologue and Epilogue
	5.1.7 MPI Environment Variables
	5.1.8 Examples of Multiprocessor Jobs
	5.1.9 Submitting SMP Jobs

	5.2 Using MPI with PBS
	5.2.1 Using an Integrated MPI
	5.2.1.1 Integration Caveats
	5.2.1.2 Integrating an MPI on the Fly
	5.2.1.2.i Integrating an MPI on the Fly using the pbs_tmrsh Command
	5.2.1.2.ii Caveats for the pbs_tmrsh Command

	5.2.2 Prerequisites to Using MPI with PBS
	5.2.3 Caveats for Using MPIs
	5.2.4 HP MPI with PBS
	5.2.4.1 Setting up Your Environment for HP MPI
	5.2.4.2 Using HP MPI with PBS
	5.2.4.3 Options
	5.2.4.4 Caveats for HP MPI with PBS

	5.2.5 Intel MPI 4.0.3 On Linux with PBS
	5.2.6 Intel MPI 4.0.3 On Windows with PBS
	5.2.6.1 Integrating Intel MPI 4.0.3 on the Fly

	5.2.7 Intel MPI 2.0.022, 3, and 4 with PBS
	5.2.7.1 Using Intel MPI 2.0.022, 3, or 4 Integrated with PBS
	5.2.7.2 Options to Integrated Intel MPI 2.0.022, 3, or 4
	5.2.7.3 MPD Startup and Shutdown
	5.2.7.4 Examples
	5.2.7.5 Restrictions

	5.2.8 LAM MPI with PBS
	5.2.8.1 Using LAM 7.x with PBS
	5.2.8.2 Using LAM 6.5.9 with PBS
	5.2.8.2.i Caveats for LAM 6.5.9 with PBS

	5.2.8.3 Example Job Submission Script

	5.2.9 MPICH-P4 with PBS
	5.2.9.1 Options for MPICH-P4 with PBS
	5.2.9.2 Example of Using MPICH-P4 with PBS
	5.2.9.3 MPICH Under Windows
	5.2.9.3.i Caveats for MPICH Under Windows

	5.2.10 MPICH-GM with PBS
	5.2.10.1 Using MPICH-GM and MPD with PBS
	5.2.10.1.i Options
	5.2.10.1.ii MPD Startup and Shutdown
	5.2.10.1.iii Examples

	5.2.10.2 Using MPICH-GM and rsh/ssh with PBS
	5.2.10.2.i Options
	5.2.10.2.ii Examples

	5.2.10.3 Restrictions

	5.2.11 MPICH-MX with PBS
	5.2.11.1 Using MPICH-MX and MPD with PBS
	5.2.11.1.i Options
	5.2.11.1.ii MPD Startup and Shutdown
	5.2.11.1.iii Examples

	5.2.11.2 Using MPICH-MX and rsh/ssh with PBS
	5.2.11.2.i Options
	5.2.11.2.ii Examples

	5.2.11.3 Restrictions

	5.2.12 MPICH2 with PBS on Linux
	5.2.12.1 Options
	5.2.12.2 MPD Startup and Shutdown
	5.2.12.3 Examples
	5.2.12.4 Restrictions

	5.2.13 MPICH2 1.4.1p1 On Windows with PBS
	5.2.14 MVAPICH with PBS
	5.2.14.1 Interface to MVAPICH mpirun Command
	5.2.14.2 Examples
	5.2.14.3 Restrictions

	5.2.15 MVAPICH2 with PBS
	5.2.15.1 Interface to MVAPICH2 mpiexec Command
	5.2.15.2 MPD Startup and Shutdown
	5.2.15.3 Examples
	5.2.15.4 Restrictions

	5.2.16 Open MPI with PBS
	5.2.16.1 Using Open MPI with PBS

	5.2.17 Platform MPI with PBS
	5.2.17.1 Using Platform MPI with PBS
	5.2.17.2 Setting up Your Environment

	5.2.18 HPE MPI with PBS
	5.2.18.1 Using HPE MPI with PBS
	5.2.18.2 Prerequisites
	5.2.18.3 Using Cpusets
	5.2.18.4 Fitting Jobs onto Nodeboards
	5.2.18.5 Checkpointing and Suspending Jobs
	5.2.18.6 Specifying Array Name
	5.2.18.7 Using CSA

	5.3 Using PVM with PBS
	5.3.1 Arguments to pvmexec Command
	5.3.2 Using PVM Daemons
	5.3.3 Submitting a PVM Job
	5.3.4 Examples

	5.4 Using OpenMP with PBS
	5.4.1 Running Fewer Threads than CPUs
	5.4.2 Running More Threads than CPUs
	5.4.3 Caveats for Using OpenMP with PBS

	5.5 Hybrid MPI-OpenMP Jobs
	5.5.1 Examples

	Controlling How Your Job Runs
	6.1 Using Job Exit Status
	6.1.1 Caveats for Exit Status

	6.2 Using Job Dependencies
	6.2.1 Syntax for Job Dependencies
	6.2.2 Job Dependency Examples
	6.2.3 Job Array Dependencies
	6.2.4 Caveats and Advice for Job Dependencies
	6.2.4.1 Correct Exit Status Required
	6.2.4.2 Permission Required for Dependencies
	6.2.4.3 Warning About Job History
	6.2.4.4 Error Reporting

	6.3 Adjusting Job Running Time
	6.3.1 Shrink-to-fit Jobs
	6.3.1.1 Requirements for a Shrink-to-fit Job
	6.3.1.2 Comparison Between Shrink-to-fit and Non-shrink-to-fit Jobs

	6.3.2 Using Shrink-to-fit Jobs
	6.3.3 Running Time of a Shrink-to-fit Job
	6.3.3.1 Setting Running Time Range for Shrink-to-fit Jobs
	6.3.3.2 Setting walltime for Shrink-to-fit Jobs

	6.3.4 Modifying Shrink-to-fit and Non-shrink-to-fit Jobs
	6.3.4.1 Modifying min_walltime and max_walltime
	6.3.4.1.i Making Non-shrink-to-fit Jobs into Shrink-to-fit Jobs
	6.3.4.1.ii Making Shrink-to-fit Jobs into Non-shrink-to-fit Jobs

	6.3.5 Viewing Running Time for a Job
	6.3.5.1 Viewing min_walltime and max_walltime
	6.3.5.2 Viewing walltime for a Shrink-to-fit Job

	6.3.6 Lifecycle of a Shrink-to-fit Job
	6.3.6.1 Execution of Shrink-to-fit Jobs
	6.3.6.2 Termination of Shrink-to-fit Jobs

	6.3.7 The min_walltime and max_walltime Resources
	6.3.8 Caveats and Restrictions for Shrink-to-fit Jobs

	6.4 Using Checkpointing
	6.4.1 Prerequisites for Checkpointing
	6.4.2 Minimum Checkpoint Interval
	6.4.3 Syntax for Specifying Checkpoint Interval
	6.4.4 Using Checkpointing for Preempting or Holding Jobs
	6.4.5 Caveats and Restrictions for Checkpointing

	6.5 Holding and Releasing Jobs
	6.5.1 Types of Holds
	6.5.2 Requirements for Holding or Releasing a Job
	6.5.3 Holding a Job Before Execution
	6.5.4 Holding a Job During Execution
	6.5.4.1 Checkpointing and Requeueing the Job
	6.5.4.2 Setting Hold Type for a Running Job

	6.5.5 Releasing a Job
	6.5.6 Caveats and Restrictions for Holding and Releasing Jobs
	6.5.7 Why is Your Job Held?
	6.5.8 Examples of Holding and Releasing Jobs

	6.6 Allowing Your Job to be Re-run
	6.6.1 Caveats and Restrictions for Marking Jobs as Rerunnable

	6.7 Controlling Number of Times Job is Re-run
	6.7.1 Caveats for Raising Value of run_count Attribute

	6.8 Deferring Execution
	6.8.1 Syntax for Deferring Execution

	6.9 Setting Priority for Your Job
	6.10 Making qsub Wait Until Job Ends
	6.10.1 Signal Handling and Error Processing for Blocking Jobs
	6.10.2 Caveats for Blocking Jobs

	6.11 Running Your Job Interactively
	6.11.1 Input and Output for Interactive Jobs
	6.11.2 Running Your Interactive Job
	6.11.3 Lifecycle of an Interactive Job
	6.11.3.1 Terminating Interactive Jobs

	6.11.4 Interactive Jobs and Exit Codes
	6.11.5 Tracking Progress for Interactive Jobs
	6.11.6 Special Sequences for Interactive Jobs
	6.11.7 Caveats and Restrictions for Interactive Jobs
	6.11.8 Errors and Logging
	6.11.9 Receiving X Output from Interactive Linux Jobs
	6.11.9.1 How to Receive X Output Under Linux
	6.11.9.1.i Receiving X Output on Non-submission Host

	6.11.9.2 Requirements for Receiving X Output
	6.11.9.3 Viewing X Output Job Attributes
	6.11.9.4 Caveats and Advice for Receiving X Output
	6.11.9.5 X Forwarding Errors

	6.11.10 Submitting Interactive GUI Jobs on Windows

	6.12 Using Environment Variables
	6.12.1 Exporting All Environment Variables
	6.12.2 Exporting Specific Environment Variables
	6.12.3 Caveat for Environment Variables and Shell Functions
	6.12.4 Forwarding Exported Shell Functions

	6.13 Specifying Which Jobs to Preempt
	6.14 Releasing Unneeded Vnodes from Your Job
	6.14.1 Caveats and Restrictions for Releasing Vnodes
	6.14.2 What Happens When You Release Vnodes
	6.14.3 Examples of Releasing Unneeded Vnodes From Job
	6.14.4 Errors

	6.15 Running Your Job in a Container
	6.15.1 Specifying Shell in Container
	6.15.2 Caveats and Restrictions

	6.16 Running Your Job in the Cloud
	6.16.1 Restrictions and Caveats for Cloud Bursting with PBS

	6.17 Allowing Your Job to Tolerate Vnode Failures

	Reserving Resources Ahead of Time
	7.1 Glossary
	7.2 Prerequisites for Reserving Resources
	7.3 Creating and Using Reservations
	7.3.1 Introduction to Creating and Using Reservations
	7.3.2 Creating Advance Reservations
	7.3.2.1 Setting Time Zone for Advance Reservations
	7.3.2.2 Examples of Creating Advance Reservations

	7.3.3 Creating Standing Reservations
	7.3.3.1 Setting Reservation Start Time and Duration
	7.3.3.2 Requirements for Creating Standing Reservations
	7.3.3.3 Examples of Creating Standing Reservations
	7.3.3.4 Getting Confirmation of a Reservation

	7.4 Changing Reservations
	7.5 Deleting Reservations
	7.6 Viewing the Status of a Reservation
	7.6.1 Examples of Viewing Reservation Status Using pbs_rstat

	7.7 Using Your Reservation
	7.7.1 Submitting a Job to a Reservation
	7.7.2 Converting a Job into a Reservation Job
	7.7.3 Viewing Status of a Job Submitted to a Reservation
	7.7.4 How Reservations Treat Jobs
	7.7.4.1 Caveats for How Reservations Treat Jobs

	7.7.5 Who Can Use Your Reservation

	7.8 Reservation Caveats and Errors
	7.8.1 Time Zone Must be Correct
	7.8.2 Reservation Errors
	7.8.3 Time Required Between Reservations
	7.8.4 Reservation Information in the Accounting Log
	7.8.5 Reservation Fault Tolerance
	7.8.6 Job and Reservation Exclusivity Must Match

	Job Arrays
	8.1 Advantages of Job Arrays
	8.2 Glossary
	8.3 Description of Job Arrays
	8.3.1 Job Script for Job Arrays
	8.3.2 Attributes and Resources for Job Arrays
	8.3.3 Scheduling Job Arrays and Subjobs
	8.3.3.1 Starving

	8.3.4 Identifier Syntax
	8.3.4.1 Examples of Using Identifier Syntax
	8.3.4.2 Shells and Array Identifiers

	8.3.5 Special Attributes for Job Arrays
	8.3.6 Job Array States
	8.3.7 PBS Environmental Variables for Job Arrays
	8.3.8 Accounting
	8.3.9 Prologues and Epilogues
	8.3.10 The “Rerunnable” Flag and Job Arrays

	8.4 Submitting a Job Array
	8.4.1 Job Array Submission Syntax
	8.4.2 Examples of Submitting Job Arrays
	8.4.3 File Staging for Job Arrays
	8.4.3.1 File Staging Syntax for Job Arrays
	8.4.3.2 Job Array Staging Syntax on Windows
	8.4.3.3 Job Array File Staging Caveats
	8.4.3.4 Examples of Staging for Job Arrays

	8.4.4 Filenames for Standard Output and Standard Error
	8.4.5 Job Array Dependencies
	8.4.5.1 Caveats for Job Array Dependencies

	8.4.6 Job Array Exit Status
	8.4.6.1 Making qsub Wait Until Job Array Finishes
	8.4.6.2 Caveats for Job Array Exit Status

	8.4.7 Caveats for Submitting Job Arrays
	8.4.7.1 No Interactive Job Submission of Job Arrays

	8.5 Viewing Status of a Job Array
	8.5.1 Example of Viewing Job Array Status

	8.6 Using PBS Commands with Job Arrays
	8.6.1 Deleting a Job Array
	8.6.2 Altering a Job Array
	8.6.3 Moving a Job Array
	8.6.4 Holding a Job Array
	8.6.5 Releasing a Job Array
	8.6.6 Selecting Job Arrays
	8.6.7 Ordering Job Arrays in the Queue
	8.6.8 Requeueing a Job Array
	8.6.9 Signaling a Job Array
	8.6.10 Sending Messages to Job Arrays
	8.6.11 Getting Log Data on Job Arrays
	8.6.12 Caveats for Using PBS Commands with Job Arrays
	8.6.12.1 Shells and PBS Commands with Job Arrays

	8.7 Job Array Caveats
	8.7.1 Job Arrays Required to be Rerunnable
	8.7.2 Resources Same for All Subjobs
	8.7.3 Checkpointing Not Supported for Job Arrays
	8.7.4 Caveats for Job Array Exit Status

	Working with PBS Jobs
	9.1 Using Job History
	9.1.1 Definitions
	9.1.2 Job History Information
	9.1.2.1 Working With Moved Jobs
	9.1.2.2 PBS Commands and Finished Jobs

	9.2 Modifying Job Attributes
	9.2.1 Changing the Selection Directive
	9.2.2 Changing the Job-wide Limit
	9.2.2.1 Caveats

	9.3 Deleting Jobs
	9.3.1 Deleting Jobs with Force
	9.3.2 Deleting Finished Jobs
	9.3.3 Deleting Moved Jobs
	9.3.4 Restricting Number of Emails

	9.4 Sending Messages to Jobs
	9.5 Sending Signals to Jobs
	9.6 Changing Order of Jobs
	9.6.1 Restrictions

	9.7 Moving Jobs Between Queues

	Checking Job & System Status
	10.1 Checking Job Status
	10.1.1 Specifying Jobs to View
	10.1.2 Viewing Default Job Status
	10.1.3 Viewing Job Status in Alternate Format
	10.1.3.1 Display Size in Gigabytes
	10.1.3.2 Display Size in Megawords

	10.1.4 Viewing Job Status in Long Format
	10.1.4.1 Path Display under Windows

	10.1.5 Listing Jobs by User
	10.1.6 Listing Running Jobs
	10.1.7 Listing Non-Running Jobs
	10.1.8 Listing Hosts Assigned to Jobs
	10.1.9 Displaying Job Comments
	10.1.10 Showing State of Job, Job Array or Subjob
	10.1.11 Printing Job Array Percentage Completed
	10.1.12 Viewing Job Start Time
	10.1.13 Viewing Estimated Start Times For Jobs
	10.1.13.1 Why Does Estimated Start Time Change?

	10.1.14 Viewing Job Status in Wide Format
	10.1.15 Viewing Information for Finished and Moved Jobs
	10.1.15.1 Getting Information on Jobs Moved to Another Server
	10.1.15.2 Job History In Standard Format
	10.1.15.3 Job History In Alternate Format

	10.1.16 Grouping Jobs and Sorting by ID
	10.1.17 Caveats for Job Information

	10.2 Checking Server Status
	10.2.1 Viewing Server Information in Default Format
	10.2.2 Viewing Server Information in Long Format

	10.3 Checking Queue Status
	10.3.1 Viewing Queue Information in Default Format
	10.3.2 Viewing Queue Information in Long Format
	10.3.3 Displaying Queue Limits in Alternate Format

	10.4 Full Display Options for Job, Queue, and Server Status
	10.4.1 Caveats for the qstat Command

	10.5 Selecting a List of Jobs
	10.5.1 Listing Job Identifiers of Finished and Moved Jobs
	10.5.2 Listing Jobs by Time Attributes

	10.6 Checking License Availability

	Submitting Cray Jobs
	11.1 PBS Jobs on the Cray
	11.2 Resources
	11.2.1 Resource Accounting

	11.3 Rules for Submitting Jobs on the Cray
	11.3.1 Always Specify Node Type
	11.3.2 Always Reserve Required Vnodes
	11.3.3 Requesting Login Node Where Job Script Runs
	11.3.4 Login Nodes in PBS Reservations
	11.3.5 Specifying Number of Chunks
	11.3.6 Specify Host for Interactive Jobs

	11.4 Techniques for Submitting Cray Jobs
	11.4.1 Requesting Groups of Login Nodes
	11.4.2 Using Internal Login Nodes Only
	11.4.3 Using Compute Nodes
	11.4.4 Requesting Specific Groups of Nodes
	11.4.5 Requesting Nodes in Specific Order
	11.4.6 Requesting Specific Hardware
	11.4.7 Requesting Accelerators
	11.4.7.1 Advice on Requesting Accelerators
	11.4.7.2 Examples of Requesting Accelerators

	11.5 Using Xeon Phi Vnodes
	11.6 Using Hyperthreads on Cray
	11.7 Viewing Cray Job Information
	11.7.1 Finding Out Where Job Was Launched
	11.7.2 Listing Jobs Running on Vnode
	11.7.3 How ALPS Request Is Constructed
	11.7.4 Viewing Accelerator Information

	11.8 Caveats and Advice
	11.8.1 Using Combination or Number Resources
	11.8.2 Avoid Invalid Cray Requests
	11.8.3 Resource Restrictions and Deprecations
	11.8.3.1 mpp* Resources Removed

	11.8.4 Do Not Request PBScrayorder
	11.8.5 Request Fewer Chunks
	11.8.6 Improving Performance

	11.9 Errors and Logging
	11.9.1 Invalid Cray Requests
	11.9.2 Job Requests More Than Available

	Using Provisioning
	12.1 Definitions
	12.2 How Provisioning Works
	12.2.1 Causing Vnodes To Be Provisioned
	12.2.2 Using an AOE
	12.2.3 Job Substates and Provisioning

	12.3 Requirements and Restrictions
	12.3.1 Host Restrictions
	12.3.1.1 Single-vnode Hosts Only
	12.3.1.2 Server Host Cannot Be Provisioned

	12.3.2 AOE Restrictions
	12.3.2.1 Vnode Job Restrictions
	12.3.2.2 Provisioning Job Restrictions
	12.3.2.3 Vnode Reservation Restrictions

	12.3.3 Requirements for Jobs
	12.3.3.1 If AOE is Requested, All Chunks Must Use Same AOE

	12.4 Using Provisioning
	12.4.1 Requesting Provisioning
	12.4.2 Commands and Provisioning
	12.4.3 How Provisioning Affects Jobs

	12.5 Caveats and Errors
	12.5.1 Requested Job AOE and Reservation AOE Should Match
	12.5.2 Allow Enough Time in Reservations
	12.5.3 Requesting Multiple AOEs For a Job or Reservation
	12.5.4 Held and Requeued Jobs
	12.5.5 Conflicting Resource Requests
	12.5.6 Job Submission and Alteration Have Same Requirements

	Using Accounting
	13.1 Using Accounting
	13.1.1 Specifying Accounting String
	13.1.2 Using Comprehensive System Accounting
	13.1.3 Using Dependencies with Accounting
	13.1.4 Advice and Caveats for Using Accounting
	13.1.4.1 Use an Integrated MPI

	Index

