Работа выполняется по Программе НИР РАН № 0315-2016-0006 ИВМиМГ СО РАН на 2017 - 2020 гг.
Рассматривается решение проблемы построения нелинейных моделей (математических выражений, функций, алгоритмов, программ) на основе заданных экспериментальных данных, множества переменных, базовых функций и операций. Разработан подход метаэвристического программирования для синтеза нелинейных моделей, который использует представление хромосомы в виде вектора действительных чисел и позволяет применить различные биоинспирированные (природоподобные) алгоритмы оптимизации при поиске моделей. Получены оценки эффективности предложенного подхода с использованием пяти различных биоинспирированных алгоритмов (генетического алгоритма, дифференциальной эволюции, алгоритма оптимизации роем частиц, алгоритма колонии пчел, алгоритма оптимизации на основе преподавания и обучения) и проведено его сравнение со стандартным алгоритмом генетического программирования, алгоритмом грамматической эволюции и алгоритмом декартового генетического программирования. Проведенные эксперименты показали существенное преимущество предложенного подхода по сравнению с указанными алгоритмами как по времени поиска решения (более чем на порядок в большинстве случаев), так и по вероятности нахождения заданной функции (модели) (во многих случаях более чем в два раза).